Skip to main content

Surface Integrity of Micro- and Nanomachined Surfaces

  • Chapter
  • 4046 Accesses

Abstract

Micro- and nanomachining processes are being developed that minimize the damage created due to the removal of materials at low and high material removal rates. In order to characterize the level of damage induced, the integrity of the workpiece surface requires to be measured. This chapter provides a state-of-the-art review of micro- and nanomachining and the measurement of surface integrity of micro- and nanomachined surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backer WR, Marshall ER, and Shaw MC, 1952, The size effect in metal cutting, Trans. ASME, 74, 61–72.

    Google Scholar 

  2. Taniguchi N, 1994, Current trends in precision machining, Precision Engineering, 16, 5–24.

    Article  Google Scholar 

  3. Shaw MC, 1952, Mechanics of three-dimensional cutting operations, J. Franklin Inst., 254, 2, 109.

    Article  Google Scholar 

  4. Heidenreich RO, Shockley W, 1948, Structure of Metals, Report on Strength of Solids, Phys. Soc. of London, 57, London, UK.

    Google Scholar 

  5. Ernst HJ, Merchant ME, 1941, Chip formation, friction, and finish of metals, Trans. Am. Soc. for Metals, 29, 299–378.

    Google Scholar 

  6. Merchant ME, 1945, Mechanics of the metal cutting process I: Orthogonal cutting and a type 2 chip, J. Appl. Phys., 16, 267–275.

    Article  Google Scholar 

  7. Piispanen V, 1937, Theory and formation of metal chips, Teknillinen Aikakaushehti (Finland), 27, 315–331.

    Google Scholar 

  8. Merchant ME, 1950, Machining Theory and Practice, Am Soc. for Metals, 5–44.

    Google Scholar 

  9. Merchant ME, 1945, Mechanics of the metal cutting process II: Orthogonal cutting, J. Appl. Phys., 16, 318–324.

    Article  Google Scholar 

  10. Barrett CS, 1943, Structure of Metals, McGraw Hill Co., New York, USA

    Google Scholar 

  11. Bridgman PW, 1952, Studies in Large Plastic Flow and Fracture, McGraw Hill Co., New York, USA.

    MATH  Google Scholar 

  12. Langford G, Cohen M, 1969, Fracture and flow in solids, Trans. ASM, 62, 623–632.

    Google Scholar 

  13. Piispanen V, 1948, Formation of metal chips, J. Appl. Phys., 19, 876–881.

    Article  Google Scholar 

  14. Blazynski TZ, Cole J M, 1960, Fracture in plastic metals, Proc. Instn. of Mech. Engrs., 1, 74, 757–763.

    Google Scholar 

  15. Shaw MC, 1950, A quantized theory of strain hardening as applied to the cutting of metals, J. AppI. Phys., 21, 599–606.

    Article  Google Scholar 

  16. Walker TJ, 1967, PhD Dissertation, Carnegie-Mellon University, Pennsylbania, USA.

    Google Scholar 

  17. Walker TJ, Shaw M C, 1969, Failure of metals in machining, Advances in Machine Tool Design and Research, Pergamon Press, 241–252. Oxford, UK.

    Google Scholar 

  18. Usui E, Gujral A, Shaw MC 1960, Wear of materials in machining, Int. J. Mach Tools and Res., 1, 187–197.

    Article  Google Scholar 

  19. Vyas A, Shaw MC, 1999, Machining effects in metals, Trans. ASME-J. Mech. Sci., 21, 1, 63–72.

    Google Scholar 

  20. Eugene F, 1952, Analysis of fracture in machined metals, Annals of CIRP, 52, 11, 13–17.

    Google Scholar 

  21. Shaw MC, 1980, A note on the failure of metals during machining, Int. Jour. Mech. Sc., 22, 673–686.

    Article  Google Scholar 

  22. Kwon KB, Cho DW, Lee SJ, Chu CN, 1999, Failure and fracture during machining, Annals of CIRP, 47/1, 43–46.

    Article  Google Scholar 

  23. Eyring H, Ree T, and Harai N, 1958, Metal machining and surface effects, Proc. Nat. Acad. Sci., 44, 683–687.

    Article  Google Scholar 

  24. Eyring H, Ree T, 1961, Significant structure of flow in solids, Proc. Nat. Acad. Sci., 47, 526–537.

    Article  Google Scholar 

  25. Eyring H, Jhon MS, 1969, Significant Theory of Liquids, J. Wiley and Sons, New York, USA.

    Google Scholar 

  26. Kececioglu D, 1958, Force components, chip geometry, and cutting energy in orthogonal and oblique machining of 1015 steel, Trans. ASME, 80, 149–168.

    Google Scholar 

  27. Kececioglu D, 1958, Shear zone temperature in metal cutting and its effects on shear flow stress, Trans. ASME, 80, 541–546.

    Google Scholar 

  28. Kececioglu D, 1960, Shear zone size, compressive stress, and shear strain in metal cutting and their effects on mean flow stress, Trans. ASME-J. Eng for Industry, 82, 79–86.

    Google Scholar 

  29. Anderson TL, 1991, Fracture Mechanics, CRC Press, Florida, USA.

    Google Scholar 

  30. Zhang B, Bagchi A, 1994, Finite element analysis of chip formation and comparison with machining experiments, Trans. ASME-J. of Eng for Industry, 116, 289.

    Article  Google Scholar 

  31. Argon AS, I. J, Safoglu R, 1975, Structure of solids, Metallurgical Transactions, 6A, 825–835.

    Google Scholar 

  32. Komanduri R, Brown RH, 1967, Machining of metallic materials, Metals and Materials, 95, 308–315.

    Google Scholar 

  33. Drucker DC, 1949, Analysis of structure in machined surfaces, J. Appl. Phys., 20, 1–8.

    Article  Google Scholar 

  34. Fleck NA, Muller GM, Ashby MF, Hutchinson JM, 1994, Dislocation motion in bcc metals, Acta Metallurgica et Materialia, 41, 10, 2855–2867.

    Google Scholar 

  35. Stelmashenko NA, Walls MG, Brown LM, Milman YV, 1993, Structure of metal structures and materials, Acta. Metallurgica et Materialia, 40, 10, 2855–2862.

    Article  Google Scholar 

  36. Ma Q, Clarke DR, 1995, The structure of machined surfaces, J. Materials Research, 46, 3, 477–483.

    Google Scholar 

  37. Nix WD, Gao H, 1998, Dislocation motion of flowing metals, J. Mech. and Physics of Solids, 1, 4, 853.

    Google Scholar 

  38. Gao H, Huang Y, Nix WD, Hutchinson JW, 1999, Structure of metals, J. of Mechanics and Physics of Solids, 47, 1239.

    Article  MATH  MathSciNet  Google Scholar 

  39. Dinesh D, Swaminathan S, Chandrasekar S, and Farris TN, 2001, Dislocation theories applied to machining, Proc ASME-IMECE, 1–8, New York, USA.

    Google Scholar 

  40. Committee on Technology National Science and Technology Council, “National Nanotechnology initiative: Leading to the next industrial revolution”, Washington D.C. 2000, Washington D.C., USA.

    Google Scholar 

  41. Snowdon K, McNeil C, Lakey J., Nanotechnology for MEMS components. mstNews 2001; 3, 9–10.

    Google Scholar 

  42. EI-Fatatry A, Correial A., Nanotechnology in Microsystems: potential influence for transmission systems and related applications., mstNews 2003; 3: 25–26.

    Google Scholar 

  43. Werner M, Köhler T, Grünwald W., Nanotechnology for applications in microsystems. mstNews 2001; 3: 4–7.

    Google Scholar 

  44. El-Hofy H, Khairy A, Masuzawa T, McGeough J., Introduction. In: McGeough J eds. Micromachining of Engineering Materials. New York: Marcel Dekker, 2002. USA.

    Google Scholar 

  45. Donaldson R, Syn C, Taylor J, Ikawa N, Shimada S., Minimum thickness of cut in diamond turning of electroplated copper. UCRL-97606 1987.

    Google Scholar 

  46. Stephenson DJ, Veselovac D, Manley S, Corbett J., Ultra-precision grinding of hard steels. Precision Engineering 2001; 15: 336–345.

    Article  Google Scholar 

  47. Rübenach O., Micro technology – applications and trends. Euspen online traininglecture.http://www.euspen.org/training/lectures/course2free2view/02MicroTechApps/de molecture.asp (accessed July 2007).

    Google Scholar 

  48. Diamond milling processes for the generation of complex optical mold inserts. http://www.lfm.uni-bremen.de/html/res/res001/res108.html (accessed July 2007).

    Google Scholar 

  49. Weck M., Ultraprecision machining of microcomponents. Machine Tools 2000; 113–122.

    Google Scholar 

  50. Schütze A, Lutz-Günter J, Nano sensors and micro integration. mstNews 2003; 3: 43–45.

    Google Scholar 

  51. Ayman EI-Fatatry, Correial A, Nanotechnology in Microsystems: potential influence for transmission systems and related applications. mstNews 2003; 3: 25.

    Google Scholar 

  52. Ikawa N, Donaldson R, Komanduri R, König W, Mckeown PA, Moriwaki T, Stowers I., Ultraprecision metal cutting – the past, the present and the future. Annals of the CIRP 1991; 40(2): 587–594.

    Article  Google Scholar 

  53. Shaw MC, Principles of Abrasive Processing, New York: Oxford University Press, 1996, New York, USA.

    Google Scholar 

  54. Komanduri R, Chandrasekaran, Raff L, Effects of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 1998; 219: 84–97.

    Article  Google Scholar 

  55. Luo X, Cheng K, Guo X, Holt R, An investigation on the mechanics of nanometric cutting and the development of its test-bed. International Journal of Production Research 2003; 41 (7): 1449–1465.

    Article  Google Scholar 

  56. Taniguchi N, Nanotechnology, New York: Oxford University Press, 1996.

    Google Scholar 

  57. Dow T, Miller E, Garrard K., Tool force and deflection compensation for small milling tools. Precision Engineering 2004; 28 (1): 31–45.

    Article  Google Scholar 

  58. Cheng K, Luo X, Ward R, Holt R, Modelling and simulation of the tool wear in nanometric cutting. Wear 2003; 255: 1427–1432.

    Article  Google Scholar 

  59. Shimada S, Molecular dynamics simulation of the atomic processes in microcutting. In McGeough J, eds., ‘Micromachining of Engineering Materials’, New York: Marcel Dekker, 2002: 63–84.

    Google Scholar 

  60. FJ Giessibl, Advances in Atomic Force Microscopy, Accessed on line at: xxx.lanl.gov/arXiv:cond-mat/0305119. Accessed December 2004.

    Google Scholar 

  61. Crommie MF, Lutz CP, Eigler DM, Atomic force microscopy, Science, 262, 218–220, 1993.

    Article  Google Scholar 

  62. Braun KF, Reider KH, AFM resolution and feature size effects, Phys. Rev. Lett, 88, 096801, 2002.

    Google Scholar 

  63. Marcus R, Ravi T, Gmitter K, Chin K, Liu D, Orvis W., Ciarlo D, Hunt C, Trujillo J, Formation of Silicon Tips with 1 nm Radius, Appl. Phys. Lett., 56, Number 3, 236–238, 1990.

    Article  Google Scholar 

  64. Giessibl FJ and Binnig G, True Atomic Resolution on KBr with a Low Temperature Atomic Force Microscope in Ultra High Vacuum, Ultramicroscopy, 42–44, 281–286, 1992.

    Article  Google Scholar 

  65. Giessibl FJ and Trafas BM, Piezoresistive Cantilevers Utilized for Scanning Tunneling and Scanning Force Microscopes in Ultra High Vacuum, Rev. Sci. Instrum., 65, 1923–1929, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Jackson, M. (2010). Surface Integrity of Micro- and Nanomachined Surfaces. In: Davim, J. (eds) Surface Integrity in Machining. Springer, London. https://doi.org/10.1007/978-1-84882-874-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-874-2_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-873-5

  • Online ISBN: 978-1-84882-874-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics