Skip to main content

Wnt Signaling in Bone Development

  • Chapter
  • First Online:

Part of the book series: Topics in Bone Biology ((TBB,volume 6))

Abstract

This chapter will focus on the role of Wnt signaling in postnatal bone formation and development. Wnts are a large family of 19 secreted carbohydrate- and lipid-modified polypeptides that mediate important biological processes like embryogenesis, organogenesis, and morphogenesis [61, 70, 71, 99]. The proteins bind to a membrane receptor complex composed of a Frizzled (FZD) G-protein coupled receptor and a low-density lipoprotein (LDL) receptor-related protein (LRP) [61, 70, 71]. There are ten different FZDs (1-10) as well as two LRPs (5 and 6), and the binding of Wnt to these receptors activates one of the several intracellular signaling pathways depending on the Wnt, FZD receptor, and the cell type involved [61, 70, 71, 99].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML (2005) Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Mol Cell Biol 25:4946-4955

    Article  CAS  PubMed  Google Scholar 

  2. Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki GR, Babij P, Allen KM, Yaworsky PJ, Bex F, Recker RR (2004) Bone biomechanical properties in LRP5 mutant mice. Bone 35:162-169

    Article  CAS  PubMed  Google Scholar 

  3. Aslan H, Ravid-Amir O, Clancy BM, Rezvankhah S, Pittman D, Pelled G, Turgeman G, Zilberman Y, Gazit Z, Hoffmann A, Gross G, Domany E, Gazit D (2006) Advance molecular profiling in vitro detects novel function of dickkopf-3 in regulation of bone formation. J Bone Miner Res 21:1935-1945

    Article  CAS  PubMed  Google Scholar 

  4. Babij P, Zhao W, Small C, Kharode Y, Yaworsky PJ, Bouxsein ML, Reddy PS, Bodine PVN, Robinson JA, Bhat B, Moran RA, Bex F (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 18:960-974

    Article  CAS  PubMed  Google Scholar 

  5. Balemans W, Devogelaer J-P, Cleiren E, Piters E, Caussin E, Van Hul W (2007) Novel LRP5 missense mutation in a patient with high bone mass phenotype results in decreased DKK1-mediated inhibition of Wnt signaling. J Bone Miner Res 22:708-716

    Article  CAS  PubMed  Google Scholar 

  6. Balemans W, van Hul W (2007) The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148:2622-2629

    Article  CAS  PubMed  Google Scholar 

  7. Baron R, Rawadi G (2007) Wnt signaling and the regulation of bone mass. Curr Osteoporos Rep 5:73-80

    Article  PubMed  Google Scholar 

  8. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102 3324-3329

    Article  CAS  PubMed  Google Scholar 

  9. Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD, MacDougald OA (2007) Wnt-10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22:1924-1932

    Article  CAS  PubMed  Google Scholar 

  10. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, Harrison SD, MacDougald OA (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277:30998-31004

    Article  CAS  PubMed  Google Scholar 

  11. Bodine PVN, Komm BS (2006) Wnt signaling and osteobla stogenesis. Rev Endocrine Metab Disord 7:33-39

    Article  CAS  Google Scholar 

  12. Bodine PVN, Zhao W, Kharode YP, Bex FJ, Lambert A-J, Goad MB, Gaur T, Stein GS, Lian JB, Komm BS (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol Endocrinol 18:1222-1237

    Article  CAS  PubMed  Google Scholar 

  13. Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J (2008) Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121:737-746

    Article  CAS  PubMed  Google Scholar 

  14. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513-1521

    Article  CAS  PubMed  Google Scholar 

  15. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y-H, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan JT (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cysteine knot-containing protein. Am J Hum Genet 68:577-589

    Article  CAS  PubMed  Google Scholar 

  16. Chen AE, Ginty DD, Fan C-M (2005) Protein kinase A signaling via CREB control myogenesis induced by Wnt proteins. Nature 433:317-322

    Article  CAS  PubMed  Google Scholar 

  17. Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102 17406-17411

    Article  CAS  PubMed  Google Scholar 

  18. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-Catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739-750

    Article  CAS  PubMed  Google Scholar 

  19. Day TF, Yang Y (2008) Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg 90:19-24

    Article  PubMed  Google Scholar 

  20. Ellies DL, Viviano B, McCarthy J, Rey J-P, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21:1738-1749

    Article  CAS  PubMed  Google Scholar 

  21. Ellwanger K, Saito H, Clement-Lacroix P, Maltry N, Niedermeyer J, Lee WK, Baron R, Rawadi G, Westphal H, Niehrs C (2008) Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol Cell Biol 28:4875-4882

    Article  CAS  PubMed  Google Scholar 

  22. Ferrari SL, Deutsch S, Antonarakis SE (2005) Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol 16:207-214

    Article  CAS  PubMed  Google Scholar 

  23. Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H, Takada S, Kim DH, Ioka RX, Ono M, Tomoyori H, Okubo M, Murase T, Kamataki A, Yamamoto J, Magoori K, Takahashi S, Miyamoto Y, Oishi H, Nose M, Okazaki M, Usui S, Imaizumi K, Yanagisawa M, Sakai J, Yamamoto TT (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A 100:229-324

    Article  CAS  PubMed  Google Scholar 

  24. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NAT, Lowik CWGM, Hamersma H, Beighton P, Papapoulos SE (2005) Bone mineral density in Sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90:6392-6395

    Article  CAS  PubMed  Google Scholar 

  25. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132-33140

    Article  CAS  PubMed  Google Scholar 

  26. Gaur T, Rich L, Lengner CJ, Hussain S, Trevant B, Ayers A, Stein JL, Bodine PVN, Komm BS, Stein GS, Lian JB (2006) Secreted frizzled-related protein-1 regulates Wnt Signaling for BMP2 induced chondrocyte differentiation. J Cell Physiol 208:87-96

    Article  CAS  PubMed  Google Scholar 

  27. Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751-764

    Article  CAS  PubMed  Google Scholar 

  28. Glass DA II, Karsenty G (2006) Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 73:43-84

    Article  CAS  PubMed  Google Scholar 

  29. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML; The Osteoporosis-Pseudoglioma Syndrome Collaborative G (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513-523

    Article  CAS  PubMed  Google Scholar 

  30. Hale LV, Halladay DL, Galvin RJS, Onyia JE, Frolik CA (2004) The Wnt pathway in human bone cells and bone-related cells: Taqman gene expression analysis. J Bone Miner Res 19:S275

    Google Scholar 

  31. Hartmann C (2007) Skeletal development - Wnts are in control. Mol Cells 24:177-184

    CAS  PubMed  Google Scholar 

  32. Hartmann C (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 16:151-158

    Article  CAS  PubMed  Google Scholar 

  33. Hayward P, Kalmar T, Arias AM (2008) Wnt/Notch signaling and information processing during development. Development 135:411-424

    Article  CAS  PubMed  Google Scholar 

  34. He X, Semenov M, Tamai K, Zeng X (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrow points the way. Development 131:1663-1677

    Article  CAS  PubMed  Google Scholar 

  35. Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727-738

    Article  CAS  PubMed  Google Scholar 

  36. Holmen SL, Giambernardi TA, Zylstra CR, Buckner-Berghuis BD, Resau JH, Hess JF, Glatt V, Bouxsein ML, Ai M, Warman ML, Williams BO (2004) Decreased BMD and limb deformities in mice carrying mutations in both LRP5 and LRP6. J Bone Miner Res 19:2033-2040

    Article  CAS  PubMed  Google Scholar 

  37. Holmen SL, Zylstra CR, Mukherjee A, Sigler RE, Faugere MC, Bouxsein ML, Deng L, Clemens TL, Williams BO (2005) Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 280:21162-21168

    Article  CAS  PubMed  Google Scholar 

  38. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49-60

    Article  CAS  PubMed  Google Scholar 

  39. Huang H, He X (2008) Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20:119-125

    Article  CAS  PubMed  Google Scholar 

  40. Iwaniec UT, Wronski TJ, Liu J, Rivera MF, Arzaga RR, Hansen G, Brommage R (2007) Parathyroid hormone stimulates bone formation in mice deficient in Lrp5. J Bone Miner Res 22:394-402

    Article  CAS  PubMed  Google Scholar 

  41. Jackson A, Vayssiere B, Garcia T, Newell W, Baron R, Roman-Roman S, Rawadi G (2005) Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone 36:585-598

    Article  CAS  PubMed  Google Scholar 

  42. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732-1740

    Article  CAS  PubMed  Google Scholar 

  43. Johnson ML (2004) The high bone mass family-the role of Wnt/LRP5 signaling in the regulation of bone mass. J Musculoskelet Neuronal Interact 4:135-138

    CAS  PubMed  Google Scholar 

  44. Johnson ML, Gong G, Kimberling W, Recker SM, Kimmel DB, Recker RR (1997) Linkage of a gene ­causing high bone mass to human chromosome 11 ­(11q12-13). Am J Hum Genet 60:1326-1332

    Article  CAS  PubMed  Google Scholar 

  45. Johnson ML, Harnish K, Nusse R, Van Hul W (2004) LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 19:1749-1757

    Article  CAS  PubMed  Google Scholar 

  46. Jones SE, Jomary C (2002) Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 24:811-820

    Article  CAS  PubMed  Google Scholar 

  47. Kang S, Bajnok L, Longo KA, Petersen RK, Hansen JB, Kristiansen K, MacDougald OA (2004) Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha. Mol Cell Biol 25:1272-1282

    Article  CAS  Google Scholar 

  48. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA II, Hartmann C, Li L, Hwang TH, Brayton CF, Lang RA, Karsenty G, Chan L (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303-314

    Article  CAS  PubMed  Google Scholar 

  49. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signaling pathway. J Cell Sci 116:2627-2634

    Article  CAS  PubMed  Google Scholar 

  50. Kelly OG, Pinison KI, Skarnes WC (2004) The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131:2803-2815

    Article  CAS  PubMed  Google Scholar 

  51. Koay MA, Brown MA (2005) Genetic disorders of the LRP5-Wnt signalling pathway affecting the skeleton. Trends Mol Med 11:129-137

    Article  PubMed  CAS  Google Scholar 

  52. Kokubu C, Heinzmann U, Kokubu T, Sakai N, Kubota T, Kawai M, Wahl MB, Galceran J, Grosschedl R, Ozono K, Imai K (2004) Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Development 131:5469-5480

    Article  CAS  PubMed  Google Scholar 

  53. Krishnan V, Bryant HU, MacDougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202-1209

    Article  CAS  PubMed  Google Scholar 

  54. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2 + pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279-283

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Sarosi I, Cattley RC, Pretorious J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W, Kostenuik P, Lacey DL, Simonet WS, Bolon B, Qian X, Shalhoub V, Orminsky MS, Ke HZ, Li X, Richards WG (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39:754-766

    Article  CAS  PubMed  Google Scholar 

  56. Li X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L, Harris SE, Rowe DW, Ke HZ, Wu D (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37:945-952

    Article  CAS  PubMed  Google Scholar 

  57. Li X, Ominsky MS, Niu Q-T, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860-869

    Article  PubMed  Google Scholar 

  58. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883-19887

    Article  CAS  PubMed  Google Scholar 

  59. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B, Lappe MM, Spitzer L, Zweier S, Braunschweiger K, Benchekroun Y, Hu X, Adair R, Chee L, FitzGerald MG, Tulig C, Caruso A, Tzellas N, Bawa A, Franklin B, McGuire S, Nogues X, Gong G, Allen KM, Anisowicz A, Morales AJ, Lomedico PT, Recker SM, Van Eerdewegh P, Recker RR, Johnson ML (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11-19

    Article  CAS  PubMed  Google Scholar 

  60. Liu B, Yu HMI, Hsu W (2007) Craniosynostosis caused by Axin2 deficiency is mediated through distinct functions of beta-catenin in proliferation and differentiation. Dev Biol 301:298-308

    Article  CAS  PubMed  Google Scholar 

  61. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781-810

    Article  CAS  PubMed  Google Scholar 

  62. Longo KA, Wright WS, Kang S, Gerin I, Chiang SH, Lucas PC, Opp MR, MacDougald OA (2004) Wnt10b inhibits development of white and brown adipose tissues. J Biol Chem 279:35503-35509

    Article  CAS  PubMed  Google Scholar 

  63. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15:928-935

    Article  CAS  PubMed  Google Scholar 

  64. Lories RJU, Peeters J, Bakker A, Tylzanowski P, Derese I, Schrooten J, Thomas JT, Luyten FP (2007) Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum 56: 4095-4103

    Article  CAS  PubMed  Google Scholar 

  65. MacDonald BT, Adamska M, Meisler MH (2004) Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. Development 131:2543-2552

    Article  CAS  PubMed  Google Scholar 

  66. MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41:331-339

    Article  CAS  PubMed  Google Scholar 

  67. Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signaling in bone growth, remodeling, skeletal repair disorders and fracture repair. J Cell Physiol 215:578-587

    Article  CAS  PubMed  Google Scholar 

  68. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302:179-183

    Article  CAS  PubMed  Google Scholar 

  69. Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, Yonezu T, Utani A (1986) Age-related changes in bone mass in the senescence-accelerated mouse (SAM): SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis. Am J Pathol 125:276-283

    CAS  PubMed  Google Scholar 

  70. Miller JR (2002) The Wnts. Genome Biol 3:REVIEWS3001

    Google Scholar 

  71. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691-701

    Article  CAS  PubMed  Google Scholar 

  72. Morvan F, Boulukos K, Clement-Lacroix P, Roman-Roman S, Suc-Royer I, Vayssiere B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21:934-945

    Article  CAS  PubMed  Google Scholar 

  73. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Belmonte JC, Westphal H (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423-434

    Article  CAS  PubMed  Google Scholar 

  74. Nakamura T, Nakamura T, Matsumoto K (2008) The functions and possible significance of Kremen as a gatekeeper of Wnt signaling in development and pathology. J Cell Mol Med 12:391-408

    Article  CAS  PubMed  Google Scholar 

  75. Nakanishi R, Akiyama H, Kimura H, Otsuki B, Shimizu M, Tsuboyama T, Nakamura T (2008) Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J Bone Miner Res 23:271-277

    Article  CAS  PubMed  Google Scholar 

  76. Nakanishi R, Shimizu M, Mori M, Akiyama H, Okudaira S, Otsuki B, Hashimoto M, Higuchi K, Hosokawa M, Tsuboyama T, Nakamura T (2006) Secreted frizzled-related protein 4 is a negative regulator of peak BMD in SAMP6 mice. J Bone Miner Res 21:1713-1721

    Article  CAS  PubMed  Google Scholar 

  77. Patel MS, Karsenty G (2002) Regulation of bone formation and vision by LRP5. N Engl J Med 346:1572-1574

    Article  CAS  PubMed  Google Scholar 

  78. Pinison KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL-receptor-related protein mediates Wnt signaling in mice. Nature 407:535-538

    Article  Google Scholar 

  79. Poole KES, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842-1844

    CAS  PubMed  Google Scholar 

  80. Pourquie O (2005) A new canon. Nature 433:208-209

    Article  CAS  PubMed  Google Scholar 

  81. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281:31720-31728

    Article  CAS  PubMed  Google Scholar 

  82. Rodda SJ, McMahon AP (2006) Distinct roles for hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231-3244

    Article  CAS  PubMed  Google Scholar 

  83. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950-953

    Article  CAS  PubMed  Google Scholar 

  84. Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Rowe DW, Duncan RL, Warman ML, Turner CH (2006) The Wnt co-receptor is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698-23711

    Article  CAS  PubMed  Google Scholar 

  85. Semenov MV, He X (2006) LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 281:38276-38284

    Article  CAS  PubMed  Google Scholar 

  86. Sharpe C, Lawrence N, Martinez Arias A (2001) Wnt signalling: a theme with nuclear variations. Bioessays 23:311-318

    Article  CAS  PubMed  Google Scholar 

  87. Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, Takada S, Minami Y, Shibuya H, Matsumoto K, Kato S (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation.[see comment]. Nat Cell Biol 9:1273-1285

    Article  CAS  PubMed  Google Scholar 

  88. ten Dijke P, Krause C, de Gorter DJJ, Lowik CWGM, van Bezooijen RL (2008) Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg 90(suppl 1):31-35

    Article  PubMed  Google Scholar 

  89. Trendelenburg V, Schaeublin M, Halleux C, Gasser JA, Guth S, Porter J, Curtis D, Seuwen K, John MR (2004) Expression of extracellular WNT pathway components in adult human trabecular bone cells. J Bone Miner Res 19:S144

    Google Scholar 

  90. Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB (2008) Expression of secreted frizzled-related protein 1, a Wnt antagonist, in brain, kidney and skeleton is dispensable for normal embryonic development. J Cell Physiol 217:113-126

    Article  CAS  PubMed  Google Scholar 

  91. Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F (2007) Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 12:113-127

    Article  CAS  PubMed  Google Scholar 

  92. van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PHA, Vrieling H, Papapoulos SE, ten Dijke P, Lowik CWGM (2007) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22:19-28

    Article  PubMed  Google Scholar 

  93. van Bezooijen RL, ten Dijke P, Papapoulos SE, Lowick CWGM (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16:319-327

    Article  PubMed  CAS  Google Scholar 

  94. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72: 763-771

    Article  PubMed  Google Scholar 

  95. Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367-377

    Article  CAS  PubMed  Google Scholar 

  96. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19-39

    Article  CAS  PubMed  Google Scholar 

  97. Weston CR, Davis RJ (2002) The JNK signal transduction pathway. Curr Opin Genet Dev 12:14-21

    Article  CAS  PubMed  Google Scholar 

  98. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267-6276

    Article  CAS  PubMed  Google Scholar 

  99. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59-88

    Article  CAS  PubMed  Google Scholar 

  100. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211-1223

    CAS  PubMed  Google Scholar 

  101. Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003-1015

    Article  CAS  PubMed  Google Scholar 

  102. Yu HMI, Jerchow B, Sheu TJ, Liu B, Costantini F, Puzas JE, Birchmeier W, Hsu W (2005) The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132:1995-2005

    Article  CAS  PubMed  Google Scholar 

  103. Zorn AM (2001) Wnt signaling: antagonistic dickkopfs. Curr Biol 11:R592-R5R5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Bodine, P.V.N. (2010). Wnt Signaling in Bone Development. In: Bronner, F., Farach-Carson, M., Roach, H. (eds) Bone and Development. Topics in Bone Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84882-822-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-822-3_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-821-6

  • Online ISBN: 978-1-84882-822-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics