Skip to main content

Role of microRNA in Skeleton Development

  • Chapter
  • First Online:
Bone and Development

Part of the book series: Topics in Bone Biology ((TBB,volume 6))

Abstract

miRNAs are single-stranded RNAs of ∼22 nucleotides that repress protein expression at a posttranscriptional level through base pairing, usually with the 3′ untranslated region (3′ UTR) of the target mRNA [1, 5, 75]. Since the discovery of the founding members of the miRNA family, lin-4 and let-7 [37, 64, 81], hundreds of miRNA genes have been identified. Many of these are independent transcriptional units that do not differ much from other protein-coding genes in recruiting transcription factors and RNA polymerase II for their transcription. miRNA genes may have promoter-enhancing regulatory sequences upstream - however, about half of miRNA genes are embedded within the introns of protein-coding genes. This omits the need for independent transcriptional regulatory elements and results in coupled transcriptional control, i.e., where the miRNA is coexpressed with the gene that codes for the protein. Posttranscriptional processing of miRNA precursors is then conducted in concert with the splicing of the mRNA that codes for the given protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2004) The functions of animal microRNAs. Nature 431:350-355

    Article  CAS  PubMed  Google Scholar 

  2. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276-1312

    Article  CAS  PubMed  Google Scholar 

  3. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22:2773-2785

    Article  CAS  PubMed  Google Scholar 

  4. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64-71

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281-297

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396-400

    Article  CAS  PubMed  Google Scholar 

  7. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006) mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885-1898

    Article  CAS  PubMed  Google Scholar 

  8. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328-336

    Article  CAS  PubMed  Google Scholar 

  9. Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  PubMed  Google Scholar 

  10. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175-205

    Article  CAS  PubMed  Google Scholar 

  11. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336-338

    Article  CAS  PubMed  Google Scholar 

  12. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228-233

    Article  CAS  PubMed  Google Scholar 

  13. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA et al (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447:823-828

    Article  CAS  PubMed  Google Scholar 

  14. Chu CY, Rana TM (2006) Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210

    Article  PubMed  Google Scholar 

  15. Cobb BS, Nesterova TB, Thompson E, Hertweck A, O’Connor E, Godwin J et al (2005) T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J Exp Med 201:1367-1373

    Article  CAS  PubMed  Google Scholar 

  16. Cohen SM, Brennecke J (2006) Developmental biology. Mixed messages in early development. Science 312:65-66

    Article  CAS  PubMed  Google Scholar 

  17. Darnell DK, Kaur S, Stanislaw S, Davey S, Konieczka JH, Yatskievych TA et al (2007) GEISHA: an in situ hybridization gene expression resource for the chicken embryo. Cytogenet Genome Res 117:30-35

    Article  CAS  PubMed  Google Scholar 

  18. Davis BN, Hilyard AC, Lagna G, Hata A (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56-61

    Article  CAS  PubMed  Google Scholar 

  19. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504-511

    Article  CAS  PubMed  Google Scholar 

  20. Eberhart JK, He X, Swartz ME, Yan YL, Song H, Boling TC et al (2008) MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 40:290-298

    Article  CAS  PubMed  Google Scholar 

  21. Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831-842

    Article  CAS  PubMed  Google Scholar 

  22. Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39:259-263

    Article  CAS  PubMed  Google Scholar 

  23. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833-838

    Article  CAS  PubMed  Google Scholar 

  24. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K et al (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75-79

    Article  CAS  PubMed  Google Scholar 

  25. Gregory RI, Chendrimada TP, Shiekhattar R (2006) MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods Mol Biol 342:33-47

    CAS  PubMed  Google Scholar 

  26. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91-105

    Article  CAS  PubMed  Google Scholar 

  27. Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005) The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci U S A 102:10898-10903

    Article  CAS  PubMed  Google Scholar 

  28. Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT et al (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438:671-674

    Article  CAS  PubMed  Google Scholar 

  29. Hornstein E, Shomron N (2006) Canalization of development by microRNAs. Nat Genet 38(suppl):S20-S24

    Article  CAS  PubMed  Google Scholar 

  30. Howard TD, Paznekas WA, Green ED, Chiang LC, Ma N, Ortiz de Luna RI et al (1997) Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat Genet 15:36-41

    Article  PubMed  Google Scholar 

  31. Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056-2060

    Article  CAS  PubMed  Google Scholar 

  32. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489-501

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E et al (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A 105:1949-1954

    Article  CAS  PubMed  Google Scholar 

  34. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495-500

    Article  CAS  PubMed  Google Scholar 

  35. Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423:332-336

    Article  CAS  PubMed  Google Scholar 

  36. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129:1401-1414

    Article  CAS  PubMed  Google Scholar 

  37. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854

    Article  CAS  PubMed  Google Scholar 

  38. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663-4670

    Article  CAS  PubMed  Google Scholar 

  39. Lee YB, Bantounas I, Lee DY, Phylactou L, Caldwell MA, Uney JB (2008) Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res 37(1):123-128

    Article  PubMed  Google Scholar 

  40. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15-20

    Article  CAS  PubMed  Google Scholar 

  41. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787-798

    Article  CAS  PubMed  Google Scholar 

  42. Li N, Flynt AS, Kim HR, Solnica-Krezel L, Patton JG (2008) Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res 36:4277-4285

    Article  CAS  PubMed  Google Scholar 

  43. Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM et al (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105:13906-13911

    Article  CAS  PubMed  Google Scholar 

  44. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-773

    Article  CAS  PubMed  Google Scholar 

  45. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB et al (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 104:20844-20849

    Article  CAS  PubMed  Google Scholar 

  46. Loebel DA, Tsoi B, Wong N, Tam PP (2005) A conserved noncoding intronic transcript at the mouse Dnm3 locus. Genomics 85:782-789

    Article  CAS  PubMed  Google Scholar 

  47. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95-98

    Article  CAS  PubMed  Google Scholar 

  48. Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res 23:287-295

    Article  CAS  PubMed  Google Scholar 

  49. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185-197

    Article  CAS  PubMed  Google Scholar 

  50. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell. 3:439-449

    Article  CAS  PubMed  Google Scholar 

  51. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP et al (2001) BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128:4523-4534

    CAS  PubMed  Google Scholar 

  52. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465-4475

    CAS  PubMed  Google Scholar 

  53. Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, Schier AF et al (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol 16:2135-2142

    Article  CAS  PubMed  Google Scholar 

  54. Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T et al (2008) miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 368:267-272

    Article  CAS  PubMed  Google Scholar 

  55. Morrison-Graham K, Schatteman GC, Bork T, Bowen-Pope DF, Weston JA (1992) A PDGF receptor mutation in the mouse (Patch) perturbs the development of a non-neuronal subset of neural crest-derived cells. Development 115:133-142

    CAS  PubMed  Google Scholar 

  56. Nicolas FE, Pais H, Schwach F, Lindow M, Kauppinen S, Moulton V et al (2008) Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA 14:2513-2520

    Article  CAS  PubMed  Google Scholar 

  57. O’Rourke MP, Soo K, Behringer RR, Hui CC, Tam PP (2002) Twist plays an essential role in FGF and SHH signal transduction during mouse limb development. Dev Biol 248:143-156

    Article  PubMed  Google Scholar 

  58. O’Rourke MP, Tam PP (2002) Twist functions in mouse development. Int J Dev Biol 46:401-413

    PubMed  Google Scholar 

  59. Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655-1666

    Article  CAS  PubMed  Google Scholar 

  60. Ornitz DM, Marie PJ (2002) FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 16:1446-1465

    Article  CAS  PubMed  Google Scholar 

  61. Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R et al (2008) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117(1):131-140

    Article  PubMed  Google Scholar 

  62. Rajewsky N, Socci ND (2004) Computational identification of microRNA targets. Dev Biol 267:529-535

    Article  CAS  PubMed  Google Scholar 

  63. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103:8721-8726

    Article  CAS  PubMed  Google Scholar 

  64. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901-906

    Article  CAS  PubMed  Google Scholar 

  65. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H et al (2008) MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19:3272-3282

    Article  CAS  PubMed  Google Scholar 

  66. Schatteman GC, Morrison-Graham K, van Koppen A, Weston JA, Bowen-Pope DF (1992) Regulation and role of PDGF receptor alpha-subunit expression during embryogenesis. Development 115:123-131

    CAS  PubMed  Google Scholar 

  67. Seitz H, Zamore PD (2006) Rethinking the microprocessor. Cell 125:827-829

    Article  CAS  PubMed  Google Scholar 

  68. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58-63

    Article  CAS  PubMed  Google Scholar 

  69. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691-2700

    CAS  PubMed  Google Scholar 

  70. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133-1146

    Article  CAS  PubMed  Google Scholar 

  71. Stratford TH, Kostakopoulou K, Maden M (1997) Hoxb-8 has a role in establishing early anterior-posterior polarity in chick forelimb but not hindlimb. Development 124:4225-4234

    CAS  PubMed  Google Scholar 

  72. Tallquist MD, Soriano P (2003) Cell autonomous requirement for pdgfralpha in populations of cranial and cardiac neural crest cells. Development 130:507-518

    Article  CAS  PubMed  Google Scholar 

  73. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980-984

    Article  CAS  PubMed  Google Scholar 

  74. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I et al (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580:4214-4217

    Article  CAS  PubMed  Google Scholar 

  75. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515-524

    Article  CAS  PubMed  Google Scholar 

  76. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555-566

    Article  CAS  PubMed  Google Scholar 

  77. Villavicencio EH, Yoon JW, Frank DJ, Fuchtbauer EM, Walterhouse DO, Iannaccone PM (2002) Cooperative E-box regulation of human GLI1 by TWIST and USF. Genesis 32:247-258

    Article  CAS  PubMed  Google Scholar 

  78. Watanabe T, Sato T, Amano T, Kawamura Y, Kawamura N, Kawaguchi H et al (2008) Dnm3os, a non-coding RNA, is required for normal growth and skeletal development in mice. Dev Dyn 237(12):3738-3748

    Article  CAS  PubMed  Google Scholar 

  79. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310-311

    Article  CAS  PubMed  Google Scholar 

  80. Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579:5911-5922

    Article  CAS  PubMed  Google Scholar 

  81. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855-862

    Article  CAS  PubMed  Google Scholar 

  82. Wu L, Belasco JG (2008) Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 29:1-7

    Article  PubMed  Google Scholar 

  83. Yang WJ, Yang DD, Na S, Sandusky GE, Zhang Q, Zhao G (2005) Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280:9330-9335

    Article  CAS  PubMed  Google Scholar 

  84. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594-596

    Article  CAS  PubMed  Google Scholar 

  85. Yekta S, Tabin CJ, Bartel DP (2008) MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 9:789-796

    Article  CAS  PubMed  Google Scholar 

  86. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011-3016

    Article  CAS  PubMed  Google Scholar 

  87. Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR et al (2006) BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development 133:4667-4678

    Article  CAS  PubMed  Google Scholar 

  88. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214-220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work at the Hornstein lab is supported by research grants from the JDRF, IDF, BIRAX, the Benoziyo Center for Neurological Disease, the Estate of Flourence Blau and the Wolfson Family Charitable trust for miRNA work at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Gradus, B., Hornstein, E. (2010). Role of microRNA in Skeleton Development. In: Bronner, F., Farach-Carson, M., Roach, H. (eds) Bone and Development. Topics in Bone Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84882-822-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-822-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-821-6

  • Online ISBN: 978-1-84882-822-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics