Skip to main content

Interrelationship Between Bone and Other Tissues: Brain–Bone Axis and Bone-Adipo Axis

  • Chapter
  • First Online:
Bone and Development

Part of the book series: Topics in Bone Biology ((TBB,volume 6))

  • 1834 Accesses

Abstract

It has been widely assumed that bone metabolism is controlled mostly by the local environment and does not affect the metabolism of other tissues. In other words, bone was thought to constitute an independent domain from the rest of the body. However, the discovery of neuronal control of bone mass by leptin has shed light on a novel pathway that controls bone metabolism [32]. Furthermore, the recent discovery that osteocalcin modified by OST-PTP regulates glucose metabolism opened a new domain linked to skeletal biology [39]. These unexpected relationships are an outgrowth from the wealth of genetically modified mouse models. Most of these pathways are still far from being fully explored, but the identification of a network between bone and other organs has attracted much attention from basic and clinical scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413-437

    Article  CAS  PubMed  Google Scholar 

  2. Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81:223-241

    Article  CAS  PubMed  Google Scholar 

  3. Ahn JD, Dubern B, Lubrano-Berthelier C, Clement K, Karsenty G (2006) Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology 147:3196-3202

    Article  CAS  PubMed  Google Scholar 

  4. Asnicar MA, Smith DP, Yang DD, Heiman ML, Fox N, Chen YF et al (2001) Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142:4394-4400

    Article  CAS  PubMed  Google Scholar 

  5. Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJ et al (2007) Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 282:19092-19102

    Article  CAS  PubMed  Google Scholar 

  6. Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM et al (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109:915-921

    CAS  PubMed  Google Scholar 

  7. Bonnet N, Laroche N, Vico L, Dolleans E, Benhamou CL, Courteix D (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318:1118-1127

    Article  CAS  PubMed  Google Scholar 

  8. Bray GA, York DA (1998) The MONA LISA hypothesis in the time of leptin. Recent Prog Horm Res 53:95-117

    CAS  PubMed  Google Scholar 

  9. Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56:231-248

    Article  CAS  PubMed  Google Scholar 

  10. Cock TA, Back J, Elefteriou F, Karsenty G, Kastner P, Chan S et al (2004) Enhanced bone formation in lipodystrophic PPARgamma(hyp/hyp) mice relocates haematopoiesis to the spleen. EMBO Rep 5:1007-1012

    Article  CAS  PubMed  Google Scholar 

  11. Cone RD (2006) Studies on the physiological functions of the melanocortin system. Endocr Rev 27:736-749

    CAS  PubMed  Google Scholar 

  12. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405-415

    Article  CAS  PubMed  Google Scholar 

  13. Dacquin R, Mee PJ, Kawaguchi J, Olmsted-Davis EA, Gallagher JA, Nichols J et al (2004) Knock-in of nuclear localised beta-galactosidase reveals that the tyrosine phosphatase Ptprv is specifically expressed in cells of the bone collar. Dev Dyn 229:826-834

    Article  CAS  PubMed  Google Scholar 

  14. Douglass J, McKinzie AA, Couceyro P (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J Neurosci 15:2471-2481

    CAS  PubMed  Google Scholar 

  15. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197-207

    Article  CAS  PubMed  Google Scholar 

  16. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448-452

    Article  CAS  PubMed  Google Scholar 

  17. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514-520

    Article  CAS  PubMed  Google Scholar 

  18. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA et al (2004) Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A 101:3258-3263

    Article  CAS  PubMed  Google Scholar 

  19. Elefteriou F, Takeda S, Liu X, Armstrong D, Karsenty G (2003) Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology 144:3842-3847

    Article  CAS  PubMed  Google Scholar 

  20. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR et al (1998) Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21:1375-1385

    Article  CAS  PubMed  Google Scholar 

  21. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266-5270

    Article  CAS  PubMed  Google Scholar 

  22. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803-815

    Article  CAS  PubMed  Google Scholar 

  23. Goulding A, Taylor RW (1998) Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int 63:456-458

    Article  CAS  PubMed  Google Scholar 

  24. Guerardel A, Tanko LB, Boutin P, Christiansen C, Froguel P (2006) Obesity susceptibility CART gene polymorphism contributes to bone remodeling in postmenopausal women. Osteoporos Int 17:156-157

    Article  PubMed  Google Scholar 

  25. Guidobono F, Pagani F, Sibilia V, Netti C, Lattuada N, Rapetti D et al (2006) Different skeletal regional response to continuous brain infusion of leptin in the rat. Peptides 27:1426-1433

    Article  CAS  PubMed  Google Scholar 

  26. Hainerova I, Torekov SS, Ek J, Finkova M, Borch-Johnsen K, Jorgensen T et al (2006) Association between neuromedin U gene variants and overweight and obesity. J Clin Endocrinol Metab 91:5057-5063

    Article  CAS  PubMed  Google Scholar 

  27. Hanada R, Nakazato M, Murakami N, Sakihara S, Yoshimatsu H, Toshinai K et al (2001) A role for neuromedin U in stress response. Biochem Biophys Res Commun 289:225-228

    Article  CAS  PubMed  Google Scholar 

  28. Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr et al (2008) The sympathetic tone ­mediates leptin’s inhibition of insulin secretion by ­modulating osteocalcin bioactivity. J Cell Biol 183:1235-1242

    Article  CAS  PubMed  Google Scholar 

  29. Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H et al (2008) Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322:1250-1254

    Article  CAS  PubMed  Google Scholar 

  30. Kaga T, Inui A, Okita M, Asakawa A, Ueno N, Kasuga M et al (2001) Modest overexpression of neuropeptide Y in the brain leads to obesity after high-sucrose feeding. Diabetes 50:1206-1210

    Article  CAS  PubMed  Google Scholar 

  31. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Kurioka S, Yano S et al (2009) Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 94:45-49

    Article  CAS  PubMed  Google Scholar 

  32. Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341-348

    Article  CAS  PubMed  Google Scholar 

  33. Kieffer TJ, Habener JF (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am J Physiol Endocrinol Metab 278:E1-E14

    CAS  PubMed  Google Scholar 

  34. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U et al (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly swedish men. J Bone Miner Res 24(5):785-791

    Article  CAS  PubMed  Google Scholar 

  35. Kondo H, Nifuji A, Takeda S, Ezura Y, Rittling SR, Denhardt DT et al (2005) Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J Biol Chem 280:30192-30200

    Article  CAS  PubMed  Google Scholar 

  36. Kristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS et al (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72-76

    Article  CAS  PubMed  Google Scholar 

  37. Kurvers HA (1998) Reflex sympathetic dystrophy: facts and hypotheses. Vasc Med 3:207-214

    CAS  PubMed  Google Scholar 

  38. Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161-166

    Article  CAS  PubMed  Google Scholar 

  39. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456-469

    Article  CAS  PubMed  Google Scholar 

  40. Levasseur R, Sabatier JP, Potrel-Burgot C, Lecoq B, Creveuil C, Marcelli C (2003) Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine 70:515-519

    Article  Google Scholar 

  41. Lian JB, Gundberg CM (1988) Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res (226):267-291

    Google Scholar 

  42. Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38:189-200

    Article  CAS  PubMed  Google Scholar 

  43. Lundberg P, Allison SJ, Lee NJ, Baldock PA, Brouard N, Rost S et al (2007) Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression. J Biol Chem 282:19082-19091

    Article  CAS  PubMed  Google Scholar 

  44. Martin A, de Vittoris R, David V, Moraes R, Begeot M, Lafage-Proust MH et al (2005) Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146:3652-3659

    Article  CAS  PubMed  Google Scholar 

  45. Martini G, Valenti R, Giovani S, Franci B, Campagna S, Nuti R (2001) Influence of insulin-like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone 28:113-117

    Article  CAS  PubMed  Google Scholar 

  46. Morberg CM, Tetens I, Black E, Toubro S, Soerensen TI, Pedersen O et al (2003) Leptin and bone mineral density: a cross-sectional study in obese and nonobese men. J Clin Endocrinol Metab 88:5795-5800

    Article  CAS  PubMed  Google Scholar 

  47. Nonogaki K (2000) New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43:533-549

    Article  CAS  PubMed  Google Scholar 

  48. Pierroz DD, Bouxsein ML, Rizzoli R, Ferrari SL (2006) Combined treatment with a [beta]-blocker and intermittent PTH improves bone mass and microarchitecture in ovariectomized mice. Bone 39:260-267

    Article  CAS  PubMed  Google Scholar 

  49. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827-832

    Article  CAS  PubMed  Google Scholar 

  50. Pogoda P, Egermann M, Schnell JC, Priemel M, Schilling AF, Alini M et al (2006) Leptin inhibits bone formation not only in rodents, but also in sheep. J Bone Miner Res 21:1591-1599

    Article  CAS  PubMed  Google Scholar 

  51. Ruhl CE, Everhart JE (2002) Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 17:1896-1903

    Article  CAS  PubMed  Google Scholar 

  52. Sainsbury A, Baldock PA, Schwarzer C, Ueno N, Enriquez RF, Couzens M et al (2003) Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 23:5225-5233

    Article  CAS  PubMed  Google Scholar 

  53. Sakamoto N, Nishiike T, Iguchi H, Sakamoto K (2000) Possible effects of one week vitamin K (menaquinone-4) tablets intake on glucose tolerance in healthy young male volunteers with different descarboxy prothrombin levels. Clin Nutr 19:259-263

    Article  CAS  PubMed  Google Scholar 

  54. Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M et al (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 86:5273-5276

    Article  CAS  PubMed  Google Scholar 

  55. Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M et al (2007) Central control of bone remodeling by neuromedin U. Nat Med 13:1234-1240

    Article  CAS  PubMed  Google Scholar 

  56. Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG Jr et al (2008) Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A 105:20529-20533

    Article  CAS  PubMed  Google Scholar 

  57. Takeda S (2008) Central control of bone remodelling. J Neuroendocrinol 20:802-807

    Article  CAS  PubMed  Google Scholar 

  58. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305-317

    Article  CAS  PubMed  Google Scholar 

  59. Tam J, Trembovler V, Di Marzo V, Petrosino S, Leo G, Alexandrovich A et al (2008) The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J 22:285-294

    Article  CAS  PubMed  Google Scholar 

  60. Tartaglia LA (1997) The leptin receptor. J Biol Chem 272:6093-6096

    CAS  PubMed  Google Scholar 

  61. Taylor WH, Khaleeli AA (2001) Coincident diabetes mellitus and primary hyperparathyroidism. Diabetes Metab Res Rev 17:175-180

    Article  CAS  PubMed  Google Scholar 

  62. Thomas T, Burguera B, Melton LJ III, Atkinson EJ, O’Fallon WM, Riggs BL et al (2001) Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114-120

    Article  CAS  PubMed  Google Scholar 

  63. Tsugawa N, Shiraki M, Suhara Y, Kamao M, Tanaka K, Okano T (2006) Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr 83:380-386

    CAS  PubMed  Google Scholar 

  64. Wiens M, Etminan M, Gill SS, Takkouche B (2006) Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med 260:350-362

    Article  CAS  PubMed  Google Scholar 

  65. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J et al (2006) Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A 103:16876-16881

    Article  CAS  PubMed  Google Scholar 

  66. Zeng H, Gragerov A, Hohmann JG, Pavlova MN, Schimpf BA, Xu H et al (2006) Neuromedin U receptor 2-deficient mice display differential responses in sensory perception, stress, and feeding. Mol Cell Biol 26:9352-9363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Takeda, S. (2010). Interrelationship Between Bone and Other Tissues: Brain–Bone Axis and Bone-Adipo Axis. In: Bronner, F., Farach-Carson, M., Roach, H. (eds) Bone and Development. Topics in Bone Biology, vol 6. Springer, London. https://doi.org/10.1007/978-1-84882-822-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-822-3_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-821-6

  • Online ISBN: 978-1-84882-822-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics