Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 48))

Abstract

The majority of nondestructive evaluation (NDE) and structural health monitoring (SHM) techniques have been developed in recognition of the fact that the presence of damage alters structural properties (stiffness, density, damping ratio, energy dissipation, etc.), and hence alters the captured dynamic signatures of the structure such as Lamb wave signals. Therefore, authentic acquisition of the dynamic signatures of the structure under inspection using appropriate sensors becomes a prerequisite for accurate damage evaluation. Akin to the soma or nerve cell in a biological neural system, a sensor is a device for detecting variations in physical, chemical or biological properties, and transforming the measurands by appropriate transduction into electrical signals [1]. Sensor technology is a rudimentary but crucial ingredient in damage identification techniques, interdisciplinarily spanning areas of physics, chemistry, materials, electronics, manufacturing and informatics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D.E.: Health Monitoring of Structural Materials and Components: Methods with Applications. John Wiley & Sons, Inc, Hoboken (2007)

    Book  Google Scholar 

  2. Graff, K.: Historical Highlights in Ultrasonics - 2. In: Proceedings of the IEEE International Ultrasonics, Ferroelectrics and Frequency Control 50th Anniversary Joint Conference: The brothers have come home, Montréal, Canada, August 24-27, 2004, pp. 5–10 (2004)

    Google Scholar 

  3. Rosen, C.Z., Hiremath, B.V., Newnham, R.: Piezoelectricity. American Institute of Physics, New York (1992)

    Google Scholar 

  4. Schulz, M.J., Sundaresan, M.J., McMichael, J., Clayton, D., Sadler, R., Nagel, B.: Piezoelectric materials at elevated temperature. Journal of Intelligent Material Systems and Structures 14, 693–705 (2003)

    Article  Google Scholar 

  5. Raghavan, A., Cesnik, C.E.S.: Finite-dimensional piezoelectric transducer modeling for guided wave based structural health monitoring. Smart Materials and Structures 14, 1448–1461 (2005)

    Article  Google Scholar 

  6. Kessler, S.S., Spearing, S.M., Atalla, M.J.: In-situ damage detection of composites structures using Lamb wave methods. In: Balageas, D. (ed.) Proceedings of the 1st European Workshop on Structural Health Monitoring, Paris, France, July 10-12, 2002, pp. 374–381. DEStech Publications, Inc (2002)

    Google Scholar 

  7. Inman, D.J., Farrar, C.R., Lopes Jr., V., Steffen Jr., V.: Damage Prognosis: for Aerospace, Civil and Mechanical Systems. John Wiley & Sons, Inc, Chichester (2005)

    Google Scholar 

  8. Wang, C.S., Chang, F.-K.: Diagnosis of impact damage in composite structures with built-in piezoelectrics network. In: Proceedings of the SPIE, vol. 3990, pp. 13–19 (2000)

    Google Scholar 

  9. Monkhouse, R.S.C., Wilcox, P., Cawley, P.: Flexible interdigital PVDF transducers for the generation of Lamb waves in structures. Ultrasonics 35, 489–498 (1997)

    Article  Google Scholar 

  10. Gu, H., Wang, M.L.: A monolithic interdigitated PVDF transducer for Lamb wave inspection. Structural Health Monitoring: An International Journal 8(2), 137–148 (2009)

    Article  Google Scholar 

  11. Monkhouse, R.S.C., Wilcox, P., Lowe, M.J.S., Dalton, R.P., Cawley, P.: The rapid monitoring of structures using interdigital Lamb wave transducers. Smart Materials and Structures 9, 304–309 (2000)

    Article  Google Scholar 

  12. Tse, F., Morse, I.: Measurement and Instrumentation Engineering. Marcel Dekker, Inc, New York (1989)

    Google Scholar 

  13. Kessler, S.S., Spearing, S.M., Soutis, C.: Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures 11, 269–278 (2002)

    Article  Google Scholar 

  14. Su, Z., Ye, L., Bu, X., Wang, X., Mai, Y.-W.: Quantitative assessment of damage in a structural beam based on wave propagation by impact excitation. Structural Health Monitoring: An international Journal 2(1), 27–40 (2003)

    Article  Google Scholar 

  15. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric ceramics. Academic Press, London (1971)

    Google Scholar 

  16. Paget, C.A.: Active Health Monitoring of Aerospace Composite Structures by Embedded Piezoceramic Transducers, Department of Aeronautics, Royal Institute of Technology Report, 2001-25 (2001) ISSN: 0280-4646

    Google Scholar 

  17. Kessler, S.S., Spearing, S.M.: In-situ sensor-based damage detection of composite materials for structural health monitoring. In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, April 22-25, 2002, vol. AIAA-2002-1545 (2002)

    Google Scholar 

  18. Grondel, S., Paget, C., Delebarre, C., Assaad, J., Levin, K.: Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers. Journal of the Acoustical Society of America 112(1), 84–90 (2002)

    Article  Google Scholar 

  19. Bhalla, S., Soh, C.K., Liu, Z.: Wave propagation approach for NDE using surface bonded piezoceramics. NDT&E International 38, 143–150 (2005)

    Article  Google Scholar 

  20. Qing, X., Kumar, A., Zhang, C., Gonzalez, I.F., Guo, G., Chang, F.-K.: A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring. Smart Materials and Structures 14, 98–103 (2005)

    Article  Google Scholar 

  21. Su, Z., Ye, L., Bu, X.: A damage identification technique for CF/EP composite laminates using distributed piezoelectric transducers. Composite Structures 57, 465–471 (2002)

    Article  Google Scholar 

  22. Lemistre, M., Balageas, D.: Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Materials and Structures 10, 504–511 (2001)

    Article  Google Scholar 

  23. Chiu, W.K., Galea, S.C., Koss, L.L., Rajic, N.: Damage detection in bonded repairs using piezoceramics. Smart Materials and Structures 9, 466–475 (2000)

    Article  Google Scholar 

  24. Chiu, W.K., Koh, Y.L., Galea, S.C., Rajic, N.: Smart structure application in bonded repairs. Composite Structures 50, 433–444 (2000)

    Article  Google Scholar 

  25. Koh, Y.L., Rajic, N., Chiu, W.K., Galea, S.: Smart structure for composite repair. Composite Structures 47, 745–752 (1999)

    Article  Google Scholar 

  26. Ihn, J.-B., Chang, F.-K.: A smart patch for monitoring crack growth in metallic structures underneath bonded composite repair patch. In: Proceedings of the American Society for Composites 17th Technical Conference, West Lafayette, IN, USA, October 21-24 (2002)

    Google Scholar 

  27. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Materials and Structures 16, 1208–1217 (2007)

    Article  Google Scholar 

  28. Su, Z., Wang, X., Chen, Z., Ye, L., Wang, D.: A built-in active sensor network for health monitoring of composite structures. Smart Materials and Structures 15, 1939–1949 (2006)

    Article  Google Scholar 

  29. Moulin, E., Assaad, J., Delebarre, C., Kaczmarek, H., Balageas, D.: Piezoelectric transducer embedded in a composite plate: application to Lamb wave generation. Journal of Applied Physics 82(5), 2049–2055 (1997)

    Article  Google Scholar 

  30. Qing, X.P., Beard, S.J., Kumar, A., Ooi, T.K., Chang, F.-K.: Built-in sensor network for structural health monitoring of composite structure. Journal of Intelligent Material Systems and Structures 18, 39–49 (2007)

    Article  Google Scholar 

  31. Badcock, R.A., Birt, E.A.: The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites. Smart Materials and Structures 9, 291–297 (2000)

    Article  Google Scholar 

  32. Yan, Y.J., Yam, L.H.: Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Composite Structures 58, 29–38 (2002)

    Article  Google Scholar 

  33. Shah, D.K., Chan, W.S., Joshi, S.P.: Delamination detection and suppression in a composite laminate using piezoceramic layers. Smart Materials and Structures 3, 293–301 (1994)

    Article  Google Scholar 

  34. Lin, M., Chang, F.-K.: The manufacture of composite structures with a built-in network of piezoceramics. Composites Science and Technology 62, 919–939 (2002)

    Google Scholar 

  35. Paget, C.A., Grondel, S., Levin, K., Delebarre, C.: Damage assessment in composites by Lamb waves and wavelet coefficients. Smart Materials and Structures 12, 393–402 (2003)

    Article  Google Scholar 

  36. Wang, C.S., Chang, F.-K.: Built-in diagnostics for impact damage identification of composite structures. In: Chang, F.-K. (ed.) Proceedings of the 2nd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 8-10, 1999, pp. 612–621. Technomic Publishing Co (1999)

    Google Scholar 

  37. Ihn, J.-B., Chang, F.-K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. diagnostics. Smart Materials and Structures 13, 609–620 (2004)

    Article  Google Scholar 

  38. Hagood, N.W., Crawley, E.F., de Luis, J., Anderson, E.H.: Development of integrated components for control of intelligent structures. In: Rogers, C.A. (ed.) Proceedings of the U.S. Army Research Office Workshop on Smart Materials, Structures, and Mathematical Issues, September 15-16, 1988, pp. 80–104. Technomic Publishing Co, Blacksburg (1988)

    Google Scholar 

  39. Paget, C.A., Levin, K., Delebarre, C.: Behavior of an embedded piezoceramic transducer for Lamb wave generation in mechanical loading. In: Proceedings of the SPIE, vol. 3985, pp. 510–520 (2000)

    Google Scholar 

  40. Mall, S., Coleman, J.M.: Monotonic and fatigue loading behaviour of quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensor. Smart Materials and Structures 7, 822–832 (1998)

    Article  Google Scholar 

  41. Guemes, A.: Optical fibre sensors. Presentation at the 1st European Pre-workshop on Structural Health Monitoring, Paris, France, July 9 (2002)

    Google Scholar 

  42. Culshaw, B., Pierce, S.G., Staszewski, W.J.: Condition monitoring in composite materials: an integrated systems approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 212(3), 189–202 (1998)

    Article  Google Scholar 

  43. Zhou, G., Sim, L.M.: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors: review. Smart Materials and Structures 11, 925–939 (2002)

    Article  Google Scholar 

  44. Takeda, S., Okabe, Y., Takeda, N.: Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Composites: Part A 33, 971–980 (2002)

    Article  Google Scholar 

  45. Satori, K., Ikeda, Y., Kurosawa, Y., Hongo, A., Takeda, N.: Development of small-diameter optical fiber sensors for damage detection in composite laminates. In: Proceedings of the SPIE (Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials), vol. 4328, pp. 285–295 (2002)

    Google Scholar 

  46. Wu, M.C., Rogowski, R.S., Tedjojuwono, K.K.: Fabrication of extremely short length fiber Bragg gratings for sensor applications. In: Proceedings of the IEEE International Conference on Sensors, Orlando, FL, USA, June 11-14, 2002, pp. 49–55 (2002)

    Google Scholar 

  47. Childers, B.A., Froggatt, M.E., Allison, S.G., Moore Sr., T.C., Hare, D.A., Batten, C.F., Jegley, D.C.: Use of 3000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure. In: Proceedings of the SPIE, vol. 4332, pp. 133–142 (2001)

    Google Scholar 

  48. Betz, D.C., Thursby, G., Culshaw, B., Staszewski, W.J.: Acousto-ultrasonic sensing using fiber Bragg gratings. Smart Materials and Structures 12, 122–128 (2003)

    Article  Google Scholar 

  49. Takeda, N., Okabe, Y., Kuwahara, J., Kojima, S., Ogisu, T.: Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing. Composites Science and Technology 65, 2575–2587 (2005)

    Article  Google Scholar 

  50. Gachagan, A., Pierce, S.G., Philp, W.R., McNab, A., Hayward, G., Culshaw, B.: Detection of ultrasonic Lamb waves in composite plates using optical-fibres. In: Proceedings of the IEEE Ultrasonics Symposium, Seattle, WA, USA, November 7-10, 1995, pp. 803–806 (1995)

    Google Scholar 

  51. Thursby, G., Dong, F., Yang, Y., Sorazu, B., Betz, D., Culshaw, B.: Fibre optic polarimetric detection of Lamb waves. In: Proceedings of the 15th Optical Fiber Sensors Conference (OFS 2002), Portland, OR, USA, May 6-10, 2002, pp. 321–324 (2002)

    Google Scholar 

  52. Gachagan, A., Hayward, G., McNab, A., Reynolds, P., Pierce, S.G., Philp, W.R., Culshaw, B.: Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46(1), 72–81 (1999)

    Article  Google Scholar 

  53. Pierce, S.G., Philp, W.R., Culshaw, B., Gachagan, A., McNab, A., Hayward, G., Lecuyer, F.: Surface-bonded optical fibre sensors for the inspection of CFRP plates using ultrasonic Lamb waves. Smart Materials and Structures 5(6), 776–787 (1996)

    Article  Google Scholar 

  54. Betz, D.C., Thursby, G., Culshaw, B., Staszewski, W.J.: Structural damage location with fiber Bragg grating rosettes and Lamb waves. Structural Health Monitoring: An International Journal 6(4), 299–308 (2007)

    Article  Google Scholar 

  55. Tsuda, H., Toyama, N., Urabe, K., Takatsubo, J.: Impact damage detection in CFRP using fiber Bragg gratings. Smart Materials and Structures 13, 719–724 (2004)

    Article  Google Scholar 

  56. Pierce, S.G., Philp, W.R., Gachagan, A., McNab, A., Hayward, G., Culshaw, B.: Surface-bonded and embedded optical fibers as ultrasonic sensors. Applied Optics 35(25), 5191–5197 (1996)

    Article  Google Scholar 

  57. Betz, D.C., Thursby, G., Culshaw, B., Staszewski, W.J.: Identification of structural damage using multifunctional Bragg grating sensors: I. theory and implementation. Smart Materials and Structures 15, 1305–1312 (2006)

    Article  Google Scholar 

  58. http://www.physikinstrumente.com/

  59. Yashiro, S., Takeda, N., Okabe, T., Sekine, H.: A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors. Composites Science and Technology 65, 659–667 (2005)

    Article  Google Scholar 

  60. Betz, D.C., Staszewski, W.J., Thursby, G., Culshaw, B.: Structural damage identification using multifunctional Bragg grating sensors: II. damage detection results and analysis. Smart Materials and Structures 15, 1313–1322 (2006)

    Article  Google Scholar 

  61. Prabhugoud, M., Pearson, J., Peters, K., Mogammed, Z.: Demonstration of failure identification methodology incorporating sensor degradation. In: Proceedings of the SPIE, vol. 5391, pp. 107–116 (2004)

    Google Scholar 

  62. Okabe, Y., Yashiro, S., Kosaka, T., Takeda, N.: Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Materials and Structures 9, 832–838 (2000)

    Article  Google Scholar 

  63. Herszberg, I., Li, H.C.H., Dharmawan, F., Mouritz, A.P., Nguyen, M., Bayandor, J.: Damage assessment and monitoring of composite ship joints. Composite Structures 67, 205–216 (2005)

    Article  Google Scholar 

  64. Li, H.C.H., Herszberg, I., Mouritz, A.P., Davis, C.E., Galea, S.C.: Sensitivity of embedded fibre optic Bragg grating sensors to disbonds in bonded composite ship joints. Composite Structures 66, 239–248 (2004)

    Article  Google Scholar 

  65. Lee, J.-R., Ryu, C.-Y., Koo, B.-Y., Kang, S.-G., Hong, C.-S., Kim, C.-G.: In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system. Smart Materials and Structures 12, 147–155 (2003)

    Article  Google Scholar 

  66. Oh, I.-K., Lim, S.-H., Lee, J.-R., Chang, F.-K.: Fiber sensor based on piezoelectric ultrasonic wave. Journal of Intelligent Material Systems and Structures 19, 299–304 (2008)

    Article  Google Scholar 

  67. Yuan, S., Liang, D., Shi, L., Zhao, X., Wu, J., Li, G., Qiu, L.: Recent progress on distributed structural health monitoring research at NUAA. Journal of Intelligent Material Systems and Structures 19, 373–386 (2008)

    Article  Google Scholar 

  68. Kim, H., Lee, K.: Diagnostic network patch system for SHM and intelligent infrastructure. In: Proceedings of the 23rd SEM International Modal Analysis Conference, Orlando, FL, USA, January 31- February 3 (2005)

    Google Scholar 

  69. Diamanti, K., Soutis, C., Hodgkinson, J.M.: Piezoelectric transducer arrangement for the inspection of large composite structures. Composites: Part A 38, 1121–1130 (2007)

    Article  Google Scholar 

  70. Kudela, P., Ostachowicz, W., Zak, A.: Damage detection in composite plates with embedded PZT transducers. Mechanical Systems and Signal Processing 22(6), 1327–1335 (2008)

    Article  Google Scholar 

  71. Buczak, A.L., Wang, H.H., Darabi, H., JafariM, A.: Genetic algorithm convergences study for sensor network optimization. Information Science 133, 267–282 (2001)

    Article  MATH  Google Scholar 

  72. Chakrabarty, K., Chiu, P.K.: Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers 51, 1448–1453 (2002)

    Article  Google Scholar 

  73. Staszewski, W.J., Worden, K.: Overview of optimal sensor location methods for damage detection. In: Rao, V.S. (ed.) Proceedings of the 8th SPIE Symposium on Smart Structures and Materials (Conference on Modeling, Signal Processing and Control of Smart Structures), Newport Beach, CA, USA, vol. 4326, pp. 179–187 (2001)

    Google Scholar 

  74. Staszewski, W.J., Worden, K.: Signal processing for damage detection. In: Staszewski, W.J., Boller, C., Tomlinson, G.R. (eds.) Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, ch. 5, pp. 163–206. John Wiley & Sons, Inc., Chichester (2004)

    Google Scholar 

  75. Worden, K., Staszewski, W.J.: Data fusion-the role of signal processing for smart structures and systems. In: Worden, K., Bullough, W., Haywood, J. (eds.) Smart Technologies, pp. 71–100. World Scientific Publishing Co, Singapore (2003)

    Google Scholar 

  76. Lee, B.C., Staszewski, W.J.: Sensor location studies for damage detection with Lamb waves. Smart Materials and Structures 16, 399–408 (2007)

    Article  Google Scholar 

  77. Guo, H.Y., Zhang, L., Zhang, L.L., Zhou, J.X.: Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Materials and Structures 13, 528–534 (2004)

    Article  Google Scholar 

  78. Tongpadungrod, P., Rhys, T.D.L., Brett, P.N.: An approach to optimise the critical sensor locations in one-dimensional novel distributive tactile surface to maximize performance. Sensors and Actuators A: Physical 105, 47–54 (2003)

    Google Scholar 

  79. Staszewski, W.J., Worden, K., Wardle, R., Tomlinson, G.R.: Fail-safe sensor distributions for impact detection in composite materials. Smart Materials and Structures 9, 298–303 (2000)

    Article  Google Scholar 

  80. Kammer, D.C.: Sensor placement for on-orbit modal identification and correlation of large space structures. AIAA Journal 14, 251–259 (1991)

    Google Scholar 

  81. Hemez, F.M., Farhat, C.: An energy based optimum sensor placement criterion and its application to structure damage detection. In: Proceedings of the SPIE (the 12th International Modal Analysis Conference), Honolulu, HI, USA, vol. 2251, pp. 1568–1575 (1994)

    Google Scholar 

  82. Miller, R.E.: Optimal sensor placement via Gaussian quadrature. Applied Mathematics and Computation 97, 71–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  83. Wouwer, A.V., Point, N., Porteman, S., Remy, M.: An approach to the selection of optimal sensor locations in distributed parameter systems. Journal of Process Control 10, 291–300 (2000)

    Article  Google Scholar 

  84. Cobb, R.G., Liebst, B.S.: Sensor placement and structural damage identification from minimal sensor information. AIAA Journal 35, 369–374 (1997)

    Article  MATH  Google Scholar 

  85. Shi, Z.Y., Law, S.S., Zhang, L.M.: Optimum sensor placement for structural damage detection. Journal of Engineering Mechanics 126, 1173–1179 (2000)

    Article  Google Scholar 

  86. Azarbayejani, M., El-Osery, A.I., Choi, K.K., Taha, M.M.R.: A probabilistic approach for optimal sensor allocation in structural health monitoring. Smart Materials and Structures (in press)

    Google Scholar 

  87. Su, Z., Ye, L.: Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm, part II: implementation and validation. Journal of Intelligent Material Systems and Structures 16, 113–125 (2005)

    Article  Google Scholar 

  88. Giurgiutiu, V., Zagrai, A., Bao, J.J.: Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Structural Health Monitoring: An International Journal 1, 41–61 (2002)

    Article  Google Scholar 

  89. Giurgiutiu, V., Zagrai, A., Bao, J.J.: Embedded active sensors for in-situ structural health monitoring of thin-wall structures. Journal of Pressure Vessel Technology 124, 293–302 (2002)

    Article  Google Scholar 

  90. Santoni, G.B., Yu, L., Xu, B., Giurgiutiu, V.: Lamb wave-mode tuning of piezoelectric wafer active sensors for structural health monitoring. Journal of Vibration and Acoustics 129, 752–762 (2007)

    Article  Google Scholar 

  91. Boller, C.: Ways and options for aircraft structural health management. Smart Materials and Structures 10, 432–440 (2001)

    Article  Google Scholar 

  92. Coverley, P.T., Staszewski, W.: Impact damage location in composite structures using optimized sensor triangulation procedure. Smart Materials and Structures 12, 795–803 (2003)

    Article  Google Scholar 

  93. Qing, X.P., Beard, S.J., Kumar, A., Sullivan, K., Aguilar, R., Merchant, M., Taniguchi, M.: The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment. Smart Materials and Structures (in press)

    Google Scholar 

  94. Wu, Z., Qing, X.P., Ghosh, K., Karbhar, V., Chang, F.-K.: Health monitoring of bonded composite repair in bridge rehabilitation. Smart Materials and Structures (in press)

    Google Scholar 

  95. Haywood, J., Coverley, P.T., Staszewski, W.J., Worden, K.: An automatic impact monitor for a composite panel employing smart sensor technology. Smart Materials and Structures 14, 265–271 (2005)

    Article  Google Scholar 

  96. Haywood, J., Staszewski, W.J., Worden, K.: Impact location in composite structures using smart sensor technology and neural networks. In: Chang, F.-K. (ed.) Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2001, pp. 1466–1475. CRC Press, Boca Raton (2001)

    Google Scholar 

  97. Gorinevsky, D., Gordon, G.A., Beard, S., Kumar, A., Chang, F.-K.: Design of integrated SHM system for commercial aircraft applications. In: Chang, F.-K. (ed.) Proceedings of the 5th International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2005, pp. 881–888. DEStech Publications, Inc (2005)

    Google Scholar 

  98. Panajott, A.V.: The structural health monitoring process at BMW. In: Chang, F.-K. (ed.) Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2001, pp. 703–712. CRC Press, Boca Raton (2001)

    Google Scholar 

  99. Lin, M., Kumar, A., Qing, X., Beard, S.J.: Advances in utilization of structurally integrated sensor networks for health monitoring in composite applications. In: Proceedings of the SPIE, vol. 4701, pp. 167–176 (2002)

    Google Scholar 

  100. Acellent Technologies Inc., 562 Weddell Drive, Suite 4, 94089 Sunnyvale, CA, USA

    Google Scholar 

  101. Lin, M., Kumar, A., Qing, X., Beard, B.J., Russell, S.S., Walker, J.L., Delay, T.K.: Monitoring the integrity of filament wound structures by built-in sensor networks. In: Proceedings of the SPIE, vol. 5054, pp. 222–229 (2003)

    Google Scholar 

  102. Lemistre, M.B., Placko, D.: Evaluation of the performances of an electromagnetic SHM system for composite, comparison between numerical simulation, experimental data and ultrasonic investigation. In: Proceedings of the SPIE (Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III), San Diego, CA, USA, vol. 5394, pp. 148–156 (2004)

    Google Scholar 

  103. Lemistre, M.B., Placko, D., Balageas, D.L.: Evaluation of the performances of the HELP-LAYER SHM system using both DPSM simulations and experiment. In: Chang, F.-K. (ed.) Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 15-17, 2003, pp. 903–910. DEStech Publications, Inc (2003)

    Google Scholar 

  104. Lemistre, M.B., Balageas, D.L.: A hybrid electromagnetic acousto-ultrasonic method for SHM of carbon/epoxy structures. Structural Health Monitoring: An International Journal 2, 153–160 (2003)

    Article  Google Scholar 

  105. Martin Jr., W.N., Ghoshal, A., Sundaresan, M.J., Lebby, G.L., Pratap, P.R., Schulz, M.J.: An artificial neural receptor system for structural health monitoring. Structural Health Monitoring: An International Journal 4(3), 229–245 (2005)

    Article  Google Scholar 

  106. Lynch, J.P., Loh, K.J.: A summary review of wireless sensors and sensor networks for structural health monitoring. The Shock and Vibration Digest 38, 91–128 (2006)

    Article  Google Scholar 

  107. Hill, J.L., Culler, D.E.: MICA: a wireless platform for deeply embedded networks. IEEE Micro 22, 12–24 (2002)

    Article  Google Scholar 

  108. Liu, L., Yuan, F.G.: Active damage localization for plate-like structures using wireless sensors and a distributed algorithm. Smart Materials and Structures (in press)

    Google Scholar 

  109. Liu, L., Yuan, F.G.: Wireless sensors with dual-controller architecture for active diagnosis in structural health monitoring. Smart Materials and Structures (in press)

    Google Scholar 

  110. Lynch, J.P.: Design of a wireless active sensing unit for localized structural health monitoring. Journal Structural Control and Health Monitoring 12, 405–423 (2005)

    Article  Google Scholar 

  111. Lynch, J.P., Sundararajan, A., Law, K.H., Sohn, H., Farrar, C.R.: Design and performance validation of a wireless active sensing unit. In: Proceedings of the International Workshop on Advanced Sensors, Structural Health Monitoring, and Smart Structures, Tokyo, Japan, November 10-11 (2003)

    Google Scholar 

  112. Grisso, B.L., Martin, L.A., Inman, D.J.: A wireless active sensing system for impedance-based structural health monitoring. In: Proceedings of the 23rd International Modal Analysis Conference (IMAC), Orlando, FL, USA, January 31- February 3 (2005)

    Google Scholar 

  113. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. International Journal of Computer and Telecommunications Networking 38, 393–422 (2002)

    Google Scholar 

  114. Zhao, X., Qian, T., Mei, G., Kwan, C., Zane, R., Walsh, C., Paing, T., Popovic, Z.: Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. wireless approaches. Smart Materials and Structures 16, 1218–1225 (2007)

    Article  Google Scholar 

  115. Lynch, J.P., Sundararajan, A., Law, K.H., Sohn, H., Farrar, C.R.: Piezoelectric structural excitation using a wireless active sensing unit. In: Detroit, M. (ed.) Proceedings of the 22nd International Modal Analysis Conference (IMAC), Dearborn, MI, USA, January 26-29 (2004)

    Google Scholar 

  116. Kim, J.S., Vinoy, K.J., Varadan, V.K.: Wireless health monitoring of cracks in structures with MEMS-IDT sensors. In: Proceedings of the SPIE, vol. 4700, pp. 342–353 (2002)

    Google Scholar 

  117. Ihler, E., Zaglauer, H.W., Herold-Schmidt, U., Dittrich, K.W., Wiesbeck, W.: Integrated wireless piezoelectric sensors. In: Proceedings of the SPIE, vol. 3991, pp. 44–51 (2000)

    Google Scholar 

  118. Liu, L., Yuan, F.G.: Development of wireless piezoelectrics sensor on the MICA platform. In: Proceedings of the 1st International Workshop on Advanced Smart Materials and Smart Structures Technology, Honolulu, HI, USA, January 12-14, 2004, pp. 253–260 (2004)

    Google Scholar 

  119. Varadan, V.K., Varadan, V.V.: Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems. Smart Materials and Structures 9(6), 953–972 (2000)

    Article  Google Scholar 

  120. Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Carryer, E.: Embedding damage detection algorithms in a wireless sensing unit for operational power efficiency. Smart Materials and Structures 13, 800–810 (2004)

    Article  Google Scholar 

  121. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, Maui, HI, USA, January 4-7, 2000, pp. 3005–3014 (2000)

    Google Scholar 

  122. Royer, E.M., Toh, C.K.: A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications 6, 46–55 (1999)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z., Ye, L. (2009). Sensors and Sensor Networks. In: Identification of Damage Using Lamb Waves. Lecture Notes in Applied and Computational Mechanics, vol 48. Springer, London. https://doi.org/10.1007/978-1-84882-784-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-784-4_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-783-7

  • Online ISBN: 978-1-84882-784-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics