Skip to main content

Fundamentals and Analysis of Lamb Waves

  • Chapter

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 48))

Abstract

The antecedent work on Lamb waves is not hard to identify. It was Lord Rayleigh in 1889 who first explained wave propagation along a guided surface [1], and the waves are known as Rayleigh waves today. Following Rayleigh’s work, Horace Lamb, a British applied mathematician, reported the waves discovered in plates in one of his historic publications, On Waves in an Elastic Plate, in 1917 [2], and the waves were named after him as Lamb waves. Horace Lamb also established the theoretical rudiments of such waves. Lamb waves did not attract great attention because of the extremely complex equations needed to describe them, until Osborne and Hart revisited this topic in 1945 to examine Lamb waves activated in structures in underwater explosions [3]. Their study unveiled much potential for applications of Lamb waves. A comprehensive solution to Lamb waves was completed by Mindlin in 1950, followed by considerable detail provided by Gazis in 1958 [4] and Viktorov in 1967 [5] who also first evaluated the dispersive properties of Lamb waves. Firestone and Ling inaugurated Lamb-wave-based damage detection in the 1940-1950s [6, 7], after which Lamb waves found niche applications in seismology and nondestructive evaluation (NDE). In parallel with theoretical development, intensive experimental investigation, for the purpose of understanding fundamentals of Lamb waves, was contributed by Worlton in 1961 [8] and Frederick and Worlton in 1962 [9]. With advances in computing devices, the period from the 1980s until the present day has witnessed unprecedented prosperity of Lamb-wave-based engineering applications, in particular Lamb-wave-based damage identification techniques in recent years [10-22].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rayleigh, L.: Waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society 20, 225–234 (1889)

    Article  Google Scholar 

  2. Lamb, H.: On waves in an elastic plate. Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences 93, 114–128 (1917)

    Article  Google Scholar 

  3. Osborne, M.F.M., Hart, S.D.: Transmission, reflection and guiding of an exponential pulse by a steel plate in water, I: theory. Journal of the Acoustical Society of America 17, 1–18 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gazis, D.C.: Exact analysis of the plane-strain vibrations of thick-walled hollow cylinders. Journal of the Acoustical Society of America 30, 786–794 (1958)

    Article  Google Scholar 

  5. Viktorov, I.A.: Rayleigh and Lamb Waves. Plenum Press, New York (1967)

    Google Scholar 

  6. Firestone, F.A., Ling, D.S.: Method and Means for Generating and Utilizing Vibration Waves in Plates, USA. Patent (1954)

    Google Scholar 

  7. Firestone, F.A., Ling, D.S.: Propagation of Waves in Plates, technical report, Sperry Products, Danbury, CT, USA (1945)

    Google Scholar 

  8. Worlton, D.C.: Experimental confirmation of Lamb waves at megacycle frequencies. Journal of Applied Physics 32, 967–971 (1961)

    Article  Google Scholar 

  9. Frederick, C.L., Worlont, D.C.: Ultrasonic thickness measurements with Lamb waves. Journal of Nondestructive Test 20, 51–55 (1962)

    Google Scholar 

  10. Fromme, P.: Monitoring of plate structures using guided ultrasonic waves. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 27, pp. 78–85. American Institute of Physics, New York (2008)

    Google Scholar 

  11. Guo, N., Cawley, P.: Lamb waves for the NDE of composite laminates. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 11, pp. 1443–1450. Plenum Press, New York (1992)

    Google Scholar 

  12. Chimenti, D.E.: Guided waves in plates and their use in materials characterization. Applied Mechanics Review 50(5), 247–284 (1997)

    Article  Google Scholar 

  13. Rose, J.L.: Guided wave nuances for ultrasonic nondestructive evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 47(3), 575–583 (2000)

    Article  Google Scholar 

  14. Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. The Shock and Vibration Digest 39(2), 91–114 (2007)

    Article  Google Scholar 

  15. Achenbach, J.D.: Quantitative nondestructive evaluation. International Journal of Solids and Structures 37, 13–27 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rose, J.L.: A baseline and vision of ultrasonic guided wave inspection potential. Journal of Pressure Vessel Technology 124, 273–282 (2002)

    Article  Google Scholar 

  17. Giurgiutiu, V., Cuc, A.: Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention. The Shock and Vibration Digest 37(2), 83–105 (2005)

    Article  Google Scholar 

  18. Montalvão, D., Maia, N.M.M., Ribeiro, A.M.R.: A review of vibration-based structural health monitoring with special emphasis on composite materials. The Shock and Vibration Digest 38(4), 295–324 (2006)

    Article  Google Scholar 

  19. Balageas, D.L.: Structural health monitoring R&D at the European Research Establishments in Aeronautics (EREA). Aerospace Science and Technology 6, 159–170 (2002)

    Article  Google Scholar 

  20. Boller, C.: Ways and options for aircraft structural health management. Smart Materials and Structures 10, 432–440 (2001)

    Article  Google Scholar 

  21. Wilcox, P.D., Konstantinidis, G., Croxford, A.J., Drinkwater, B.W.: Strategies for guided wave structural health monitoring. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 26, pp. 1469–1476. American Institute of Physics, New York (2007)

    Google Scholar 

  22. Su, Z., Ye, L., Lu, Y.: Guided Lamb waves for identification of damage in composite structures: a review. Journal of Sound and Vibration 295, 753–780 (2006)

    Article  Google Scholar 

  23. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, New York (1999)

    Google Scholar 

  24. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland Pub. Co./American Elsevier Pub. Co., New York (1973)

    MATH  Google Scholar 

  25. Cheeke, J.D.N.: Fundamentals and Applications of Ultrasonic Waves. CRC Press, Boca Raton (2002)

    Google Scholar 

  26. Birt, E.A.: Damage detection in carbon-fibre composites using ultrasonic Lamb waves. Insight 40(5), 335–339 (1998)

    Google Scholar 

  27. Badcock, R.A., Birt, E.A.: The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites. Smart Materials and Structures 9, 291–297 (2000)

    Article  Google Scholar 

  28. Percival, W.J., Birt, E.A.: A study of Lamb wave propagation in carbon-fibre composites. Insight 39, 728–735 (1997)

    Google Scholar 

  29. Alleyne, D.N., Cawley, P.: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation 15(1), 11–20 (1996)

    Article  Google Scholar 

  30. Hinders, M.: Guided wave helical ultrasound tomography of pipes and tubes, http://www.as.wm.edu/Faculty/Hinders/HUT-W&M.pdf

  31. Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in cylindrical pipes and plates using piezo-actuated Lamb waves. Smart Materials and Structures 14, 1325–1342 (2005)

    Article  Google Scholar 

  32. Leonard, K.R., Hinders, M.K.: Guided wave helical ultrasonic tomography of pipes. Journal of the Acoustical Society of America 114(2), 767–774 (2003)

    Article  Google Scholar 

  33. Wang, L., Yuan, F.G.: Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments. Composites Science and Technology 67, 1370–1384 (2007)

    Article  Google Scholar 

  34. Kim, Y.-H., Kim, D.-H., Han, J.-H., Kim, C.-G.: Damage assessment in layered composites using spectral analysis and Lamb wave. Composites: Part B 38, 800–809 (2007)

    Article  Google Scholar 

  35. Lowe, M.J.S.: Matrix techniques for modelling ultrasonic waves in multilayered media. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 42(4), 525–541 (1995)

    Article  Google Scholar 

  36. Habeger, C.C., Mann, R.W., Baum, G.A.: Ultrasonic plate waves in paper. Ultrasonics 17, 57–62 (1979)

    Article  Google Scholar 

  37. Santosa, F., Pao, Y.-H.: Transient axially asymmetric response of an elastic plate. Wave Motion 11, 271–295 (1989)

    Article  MATH  Google Scholar 

  38. Karunasena, W., Shah, A.H., Datta, S.K.: Wave propagation in a multilayered laminated cross-ply composite plate. Journal of Applied Mechanics 58, 1028–1033 (1991)

    Article  MATH  Google Scholar 

  39. Ghoshal, A., Martin, W.N., Schulz, M.J.: Simulation of asymmetric Lamb wave propagation for health monitoring. In: Balageas, D. (ed.) Proceedings of the 1st European Workshop on Structural Health Monitoring, Paris, France, July 10-12, 2002, pp. 365–373. DEStech Publications, Inc. (2002)

    Google Scholar 

  40. Nayfeh, A.H., Chimenti, D.E.: Free wave propagation in plates of general anisotropic media. Journal of Applied Mechanics 56, 881–887 (1989)

    Article  MATH  Google Scholar 

  41. Wilcox, P.: Modeling the excitation of Lamb and SH waves by point and line sources. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 23, pp. 206–213. Springer, Heidelberg (2004)

    Google Scholar 

  42. Aberg, M., Gudmundson, P.: Micromechanical modeling of transient waves from matrix cracking and fibre fracture in laminated beams. International Journal of Solids and Structures 37, 4083–4102 (2000)

    Article  MATH  Google Scholar 

  43. Galan, J.M., Abascal, R.: Numerical simulation of Lamb wave scattering in semi-infinite plates. International Journal for Numerical Methods in Engineering 53, 1145–1173 (2002)

    Article  Google Scholar 

  44. Adamou, A.T.I., Craster, R.V.: Spectral methods for modeling guided waves in elastic media. Journal of the Acoustical Society of America 116, 1524–1535 (2004)

    Article  Google Scholar 

  45. Mal, A.K.: Wave propagation in layered composite laminates under periodic surface loads. Wave Motion 10, 257–266 (1998)

    Article  Google Scholar 

  46. Lih, S.-S., Mal, A.K.: On the accuracy of approximate plate theories for wave field calculations in composite laminates. Wave Motion 21, 17–34 (1995)

    Article  MATH  Google Scholar 

  47. Xu, X., Goossens, J., Shkerdin, G., Glorieux, C.: Effect of loading a plate with different liquids on the propagation of Lamb-like waves studied by laser ultrasonics. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55, 675–685 (2008)

    Article  Google Scholar 

  48. http://www.imperial.ac.uk/ndt/public/productservice/disperse.htm

  49. Lee, B.C., Staszewski, W.J.: Modelling of Lamb waves for damage detection in metallic structures: part I - wave propagation. Smart Materials and Structures 12, 804–814 (2003)

    Article  Google Scholar 

  50. Olson, S.E., DeSimio, M.P., Derriso, M.M.: Beam forming of Lamb waves for structural health monitoring. Journal of Vibration and Acoustics 129, 730–738 (2007)

    Article  Google Scholar 

  51. Diamanti, K., Soutis, C., Hodgkinson, J.M.: Piezoelectric transducer arrangement for the inspection of large composite structures. Composites: Part A 38, 1121–1130 (2007)

    Article  Google Scholar 

  52. Alleyne, D.N., Cawley, P.: The interaction of Lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(3), 381–397 (1992)

    Article  Google Scholar 

  53. Guo, N., Cawley, P.: The interaction of Lamb waves with delamination in composite laminates. Journal of the Acoustical Society of America 94(4), 2240–2246 (1993)

    Article  Google Scholar 

  54. Chang, F.-K., Markmiller, F.C., Ihn, J.-B., Cheng, K.Y.: A potential link from damage diagnostics to health prognostics of composites through built-in sensors. Journal of Vibration and Acoustics 129, 718–729 (2007)

    Article  Google Scholar 

  55. Luo, R.K.: The evaluation of impact damage in a composite plate with a hole. Composites Science and Technology 60, 49–58 (2000)

    Article  Google Scholar 

  56. Ostachowicz, W.M.: Damage detection of structures using spectral finite element method. Computers and Structures 86, 454–462 (2008)

    Article  Google Scholar 

  57. Guo, N., Cawley, P.: Lamb wave propagation in composite laminates and its relationship with acousto-ultrasonics. NDT&E International 26(2), 75–84 (1993)

    Article  Google Scholar 

  58. Wong, C.K.W., Chiu, W.K., Rajic, N., Galea, S.C.: Can stress waves be used for monitoring sub-surface defects in repaired structures? Composite Structures 76, 199–208 (2006)

    Article  Google Scholar 

  59. Diligent, O., Lowe, M.J.S.: Reflection of the S0 Lamb mode from a flat bottom circular hole. Journal of the Acoustical Society of America 118(5), 2869–2879 (2005)

    Article  Google Scholar 

  60. Alleyne, D., Cawley, P.: A 2-dimensional Fourier transform method for the quantitative measurement of Lamb modes. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 10, pp. 201–208. Plenum Press, New York (1991)

    Google Scholar 

  61. Lowe, M.J.S., Diligent, O.: Low-frequency reflection characteristics of the S0 Lamb wave from a rectangular notch in a plate. Journal of the Acoustical Society of America 111(1), 64–74 (2002)

    Article  Google Scholar 

  62. Kim, J., Ko, B., Lee, J.-K., Cheong, C.-C.: Finite element modeling of a piezoelectric smart structure for the cabin noise problem. Smart Materials and Structures 8, 380–389 (1999)

    Article  Google Scholar 

  63. Huang, N., Ye, L., Su, Z.: Parameterised modelling technique and its application to artificial neural network-based structural health monitoring. In: Ye, L., Mai, Y.-W., Su, Z. (eds.) Proceedings of the 4th Asian-Australasian Conference on Composite Materials (ACCM 2004), Sydney, Australia, July 6-9, 2004, pp. 999–1004. Woodhead Publishing Ltd. (2004)

    Google Scholar 

  64. Su, Z., Ye, L.: Lamb wave propagation-based damage identification for quasi-isotropic CF/EP composite laminates using artificial neural algorithm, part I: methodology and database development. Journal of Intelligent Material Systems and Structures 16, 97–111 (2005)

    Article  Google Scholar 

  65. Liu, G.R.: A combined finite element-strip element method for analyzing elastic wave scattering by cracks and inclusions in laminates. Computational Mechanics 28, 76–81 (2002)

    Article  MATH  Google Scholar 

  66. Moulin, E., Assaad, J., Delebarre, C., Grondel, S., Balageas, D.: Modeling of integrated Lamb waves generation systems using a coupled finite element-normal modes expansion method. Ultrasonics 38, 522–526 (2000)

    Article  Google Scholar 

  67. Cortes, D.H., Datta, S.K., Mukdadi, O.M.: Dispersion of elastic guided waves in piezoelectric infinite plates with inversion layers. International Journal of Solids and Structures 45, 5088–5102 (2008)

    Article  Google Scholar 

  68. Cho, Y., Rose, J.L.: A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. Journal of the Acoustical Society of America 99, 2097–2109 (1996)

    Article  Google Scholar 

  69. Grondel, S., Paget, C., Delebarre, C., Assaad, J., Levin, K.: Design of optimal configuration for generating A0 Lamb mode in a composite plate using piezoceramic transducers. Journal of the Acoustical Society of America 112(1), 84–90 (2002)

    Article  Google Scholar 

  70. Prasad, S.M., Balasubramaniam, K., Krishnamurthy, C.V.: Structural health monitoring of composite structures using Lamb wave tomography. Smart Materials and Structures 13, N73–N79 (2004)

    Article  Google Scholar 

  71. Kim, S.B., Sohn, H.: Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials. Smart Materials and Structures 16, 2375–2387 (2007)

    Article  Google Scholar 

  72. Konstantinidis, G., Drinkwater, B.W., Wilcox, P.D.: The temperature stability of guided wave structural health monitoring systems. Smart Materials and Structures 15, 967–976 (2006)

    Article  Google Scholar 

  73. Wilcox, P., Lowe, M., Cawley, P.: Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 52(4), 653–665 (2005)

    Article  Google Scholar 

  74. Pierce, S.G., Culshaw, B., Manson, G., Worden, K., Staszewski, W.J.: The application of ultrasonic Lamb wave techniques to the evaluation of advanced composite structures. In: Claus, R.O., Spillman Jr., W.B. (eds.) Proceedings of the SPIE, vol. 3986, pp. 93–103 (2000)

    Google Scholar 

  75. Konstantinidis, G., Drinkwater, B.W., Wilcox, P.D.: The long term stability of guided waves structural health monitoring systems. In: Proceedings of the AIP Conference on Quantitative Nondestructive Evaluation, March 6, 2006, vol. 820, pp. 1702–1709 (2006)

    Google Scholar 

  76. Lu, Y., Ye, L., Su, Z., Huang, N.: Quantitative evaluation of crack orientation in aluminium plates based on Lamb waves. Smart Materials and Structures 16, 1907–1914 (2007)

    Article  Google Scholar 

  77. Su, Z., Wang, X., Chen, Z., Ye, L., Wang, D.: A built-in active sensor network for health monitoring of composite structures. Smart Materials and Structures 15, 1939–1949 (2006)

    Article  Google Scholar 

  78. Monnier, T.: Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers. Journal of Intelligent Material Systems and Structures 17, 411–421 (2006)

    Article  Google Scholar 

  79. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C., Rose, J.L.: Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart Materials and Structures 16, 1208–1217 (2007)

    Article  Google Scholar 

  80. Blaise, E., Chang, F.-K.: Built-in diagnostic for debonding in sandwich structures under extreme temperature. In: Chang, F.-K. (ed.) Proceedings of the 3rd International Workshop on Structural Health Monitoring, Stanford, CA, USA, September 12-14, 2001, pp. 154–163. CRC Press, Boca Raton (2001)

    Google Scholar 

  81. Blaise, E., Chang, F.-K.: Built-in damage detection system for sandwich structures under cryogenic temperatures. In: Proceedings of the SPIE, vol. 4701, pp. 97–107 (2002)

    Google Scholar 

  82. Konstantinidis, G., Wilcox, P.D., Drinkwater, B.W.: An investigation into the temperature stability of a guided wave structural health monitoring system using permanently attached sensors. IEEE Sensors Journal 7(5), 905–912 (2007)

    Article  Google Scholar 

  83. Nguyen, C.-H., Pietrzko, S., Buetikofer, R.: The influence of temperature and bonding thickness on the actuation of a cantilever beam by PZT patches. Smart Materials and Structures 13, 851–860 (2004)

    Article  Google Scholar 

  84. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. Journal of Intelligent Material Systems and Structures 11, 246–257 (2000)

    Google Scholar 

  85. Andrews, J.P., Palazotto, A.N., DeSimio, M.P., Olson, S.E.: Lamb wave propagation in varying isothermal environments. Structural Health Monitoring: An International Journal 7(3), 265–270 (2008)

    Article  Google Scholar 

  86. Qing, X.P., Beard, S.J., Kumar, A., Sullivan, K., Aguilar, R., Merchant, M., Taniguchi, M.: The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment. Smart Materials and Structures (in press)

    Google Scholar 

  87. Lee, B.C., Manson, B., Staszewski, W.J.: Environmental effects on Lamb wave responses from piezoceramic sensors. In: Proceedings of the 5th International Conference on Modern Practice in Stress and Vibration Analysis, Glasgow, Scotland, September 9-11, 2003, vol. 440-441, pp. 195–202 (2003)

    Google Scholar 

  88. Raghavan, A., Cesnik, C.E.S.: Effects of elevated temperature on guided-wave structural health monitoring. Journal of Intelligent Material Systems and Structures 19, 1383–1398 (2008)

    Article  Google Scholar 

  89. Inman, D.J., Farrar, C.R., Lopes Jr., V., Steffen Jr., V.: Damage Prognosis: for Aerospace, Civil and Mechanical Systems. John Wiley & Sons, Inc, Chichester (2005)

    Google Scholar 

  90. Michaels, J.E.: Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Materials and Structures (in press)

    Google Scholar 

  91. Michaels, J.E., Michaels, T.E.: An integrated strategy for detection and imaging of damage using a spatially distributed array of piezoelectric sensors. In: Proceedings of the SPIE (Conference on Health Monitoring of Structural and Biological Systems), vol. 6532 (2007) Paper No.: 653203

    Google Scholar 

  92. Jin, J., Quek, S.T., Wang, Q.: Design of interdigital transducers for crack detection in plates. Ultrasonics 43, 481–493 (2005)

    Article  Google Scholar 

  93. Tua, P.S., Quek, S.T., Wang, Q.: Detection of cracks in plates using piezo-actuated Lamb waves. Smart Materials and Structures 13, 643–660 (2004)

    Article  Google Scholar 

  94. Lee, B.C., Staszewski, W.J.: Lamb wave propagation modelling for damage detection: II. damage monitoring strategy. Smart Materials and Structures 16, 260–274 (2007)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, Z., Ye, L. (2009). Fundamentals and Analysis of Lamb Waves. In: Identification of Damage Using Lamb Waves. Lecture Notes in Applied and Computational Mechanics, vol 48. Springer, London. https://doi.org/10.1007/978-1-84882-784-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-784-4_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-783-7

  • Online ISBN: 978-1-84882-784-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics