Skip to main content

Amniotic Fluid and Placenta Stem Cells

  • Chapter
  • First Online:

Abstract

Human amniotic fluid has been used in prenatal diagnosis for more than 70 years. It has proven to be a safe, reliable, and simple screening tool for a wide variety of developmental and genetic diseases. However, there is now evidence that amniotic fluid may be more than just a diagnostic tool – it may be the source of a powerful therapy for a multitude of congenital and adult disorders. A subset of cells found in the amniotic fluid and placenta appears to be capable of maintaining prolonged undifferentiated proliferation. In addition, these cells can also differentiate into multiple tissue types that encompass the three embryonic germ layers of the embryo, suggesting that they could be used for a myriad of tissue engineering and cell therapeutic applications. It is possible that in the near future, we will see the development of therapies that use progenitor cells isolated from amniotic fluid and placenta for the treatment of newborns with congenital malformations as well as the development of therapies for adults that make use of cryopreserved amniotic fluid and placental stem cells. Here, we describe the isolation and characterization of pluripotent progenitor cells from amniotic fluid and placenta and the various cell lines derived from these cells. Finally, we discuss the potential future directions for this research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Snow MH, Bennett D. Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol. 1978;47:39-52.

    CAS  PubMed  Google Scholar 

  2. Downs KM, Harmann C. Developmental potency of the murine allantois. Development. 1997;124(14):2769-2780.

    CAS  PubMed  Google Scholar 

  3. Downs KM, Hellman ER, McHugh J, Barrickman K, Inman KE. Investigation into a role for the primitive streak in development of the murine allantois. Development. 2004;131(1):37-55.

    Article  CAS  PubMed  Google Scholar 

  4. Gardner RL, Beddington RS. Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci. 1988;10(suppl):11-27.

    CAS  Google Scholar 

  5. Loebel DA, Watson CM, De Young RA, Tam PP. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol. 2003;264(1):1-14.

    Article  CAS  PubMed  Google Scholar 

  6. Moser M, Li Y, Vaupel K, et al. Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol. 2004;24(4):1667-1679.

    Article  CAS  PubMed  Google Scholar 

  7. Smith JL, Gesteland KM, Schoenwolf GC. Prospective fate map of the mouse primitive streak at 7.5 days of gestation. Dev Dyn. 1994;201(3):279-289.

    CAS  PubMed  Google Scholar 

  8. Kinder SJ, Tsang TE, Quinlan GA, Hadjantonakis AK, Nagy A, Tam PP. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development. 1999;126(21):4691-4701.

    CAS  PubMed  Google Scholar 

  9. Parameswaran M, Tam PP. Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet. 1995;17(1):16-28.

    Article  CAS  PubMed  Google Scholar 

  10. Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci. 1999;112(Pt 5):601-612.

    CAS  PubMed  Google Scholar 

  11. Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol Bioeng. 2002;78(4):442-453.

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Arman E, Ekblom P, Edgar D, Murray P, Lonai P. Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development. 2004;131(21):5277-5286.

    Article  CAS  PubMed  Google Scholar 

  13. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662-1665.

    Article  CAS  PubMed  Google Scholar 

  14. Robinson WP, McFadden DE, Barrett IJ, et al. Origin of amnion and implications for evaluation of the fetal genotype in cases of mosaicism. Prenat Diagn. 2002;22(12):1076-1085.

    Article  PubMed  Google Scholar 

  15. Bartha JL, Romero-Carmona R, Comino-Delgado R, Arce F, Arrabal J. Alpha-fetoprotein and hematopoietic growth factors in amniotic fluid. Obstet Gynecol. 2000;96(4):588-592.

    Article  CAS  PubMed  Google Scholar 

  16. Heidari Z, Isobe K, Goto S, Nakashima I, Kiuchi K, Tomoda Y. Characterization of the growth factor activity of amniotic fluid on cells from hematopoietic and lymphoid organs of different life stages. Microbiol Immunol. 1996;40(8):583-589.

    CAS  PubMed  Google Scholar 

  17. Sakuragawa N, Elwan MA, Fujii T, Kawashima K. Possible dynamic neurotransmitter metabolism surrounding the fetus. J Child Neurol. 1999;14(4):265-266.

    Article  CAS  PubMed  Google Scholar 

  18. Srivastava MD, Lippes J, Srivastava BI. Cytokines of the human reproductive tract. Am J Reprod Immunol. 1996;36(3):157-166.

    CAS  PubMed  Google Scholar 

  19. Baschat AA, Hecher K. Fetal growth restriction due to placental disease. Semin Perinatol. 2004;28(1):67-80.

    Article  PubMed  Google Scholar 

  20. Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monitor. 2002;8(11):RA253-RA257.

    Google Scholar 

  21. Medina-Gomez P, del Valle M. Cultivo de celas de liquido amniotico. Analisis de colonias, metafases e indice mitotico, con fin de descartar contaminacion de celulas maternas. Gynecol Obstet Mex. 1988;56:122-126.

    CAS  Google Scholar 

  22. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548-1549.

    Article  PubMed  Google Scholar 

  23. Prusa AR, Marton E, Rosner M, et al. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol. 2004;191(1):309-314.

    Article  PubMed  Google Scholar 

  24. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy.[see comment]. Nat Biotechnol. 2007;25(1):100-106.

    Article  PubMed  Google Scholar 

  25. Siddiqui MJ, Atala A. Aminiotic fluid derived pluripotential cells. In: Handbook of Stem Cells. San Diego, CA: Elsevier Academic Press; 2004:175-179.

    Chapter  Google Scholar 

  26. Bryan TM, Englezou A, Dunham MA, Reddel RR. Telomere length dynamics in telomerase-positive immortal human cell populations. Exp Cell Res. 1998;239(2):370-378.

    Article  CAS  PubMed  Google Scholar 

  27. Cremer M, Schachner M, Cremer T, Schmidt W, Voigtlander T. Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect. Hum Genet. 1981;56(3):365-370.

    Article  CAS  PubMed  Google Scholar 

  28. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64(2):295-312.

    Article  CAS  PubMed  Google Scholar 

  29. Karsenty G. Role of Cbfa1 in osteoblast differentiation and function. Semin Cell Dev Biol. 2000;11(5):343-346.

    Article  CAS  PubMed  Google Scholar 

  30. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts [see comment]. Cell. 1997;89(5):755-764.

    Article  CAS  PubMed  Google Scholar 

  31. Delo DM, De Coppi P, Bartsch G Jr, Atala A. Amniotic fluid and placental stem cells. Method Enzymol. 2006;419:426-438.

    Article  CAS  Google Scholar 

  32. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: long-term culture in a sandwich configuration. FASEB J. 1989;3(2):174-177 [erratum appears in FASEB J May 1989;3(7):1873].

    CAS  PubMed  Google Scholar 

  33. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J Clin Invest. 2002;109(10):1291-1302.

    CAS  PubMed  Google Scholar 

  34. Hamazaki T, Iiboshi Y, Oka M, et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 2001;497(1):15-19.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA. Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim. 1995;31(10):773-779.

    Article  CAS  PubMed  Google Scholar 

  36. Bailey P, Holowacz T, Lassar AB. The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol. 2001;13(6):679-689.

    Article  CAS  PubMed  Google Scholar 

  37. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol. 1994;164(1):87-101.

    Article  CAS  PubMed  Google Scholar 

  38. Hinterberger TJ, Sassoon DA, Rhodes SJ, Konieczny SF. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol. 1991;147(1):144-156.

    Article  CAS  PubMed  Google Scholar 

  39. Patapoutian A, Yoon JK, Miner JH, Wang S, Stark K, Wold B. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development. 1995;121(10):3347-3358.

    CAS  PubMed  Google Scholar 

  40. Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons. Blood Cell Mol Dis. 2001;27(3):632-636.

    Article  CAS  Google Scholar 

  41. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61(4):364-370.

    Article  CAS  PubMed  Google Scholar 

  42. Guan K, Chang H, Rolletschek A, Wobus AM. Embryonic stem cell-derived neurogenesis. Retinoic acid induction and lineage selection of neuronal cells. Cell Tissue Res. 2001;305(2):171-176.

    Article  CAS  PubMed  Google Scholar 

  43. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, Rao MS. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol. 2001;172(2):383-397.

    Article  CAS  PubMed  Google Scholar 

  44. Chazan JA, Libbey NP, London MR, Pono L, Abuelo JG. The clinical spectrum of renal osteodystrophy in 57 chronic hemodialysis patients: a correlation between biochemical parameters and bone pathology findings. Clin Nephrol. 1991;35(2):78-85.

    CAS  PubMed  Google Scholar 

  45. Cohen J, Hopkin J, Kurtz J. Infectious Complications After Renal Transplantation. Philadelphia, PA: W.B. Saunders; 1994.

    Google Scholar 

  46. Ojo AO, Hanson JA, Wolfe RA, Leichtman AB, Agodoa LY, Port FK. Long-term survival in renal transplant recipients with graft function. Kidney Int. 2000;57(1):307-313.

    Article  CAS  PubMed  Google Scholar 

  47. Ojo AO, Hanson JA, Meier-Kriesche H, et al. Survival in recipients of marginal cadaveric donor kidneys compared with other recipients and wait-listed transplant candidates. J Am Soc Nephrol. 2001;12(3):589-597.

    CAS  PubMed  Google Scholar 

  48. Perin L, Giuliani S, Jin D, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40(6):936-948.

    Article  CAS  PubMed  Google Scholar 

  49. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100-106.

    Article  PubMed  Google Scholar 

  50. Hoehn H, Bryant EM, Fantel AG, Martin GM. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. III. The fetal urine as a potential source of clonable cells. Humangenetik. 1975;29(4):285-290.

    Article  CAS  PubMed  Google Scholar 

  51. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation 3. Blood. 2003; 102(4):1548-1549.

    Article  PubMed  Google Scholar 

  52. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol 2. Hum Reprod. 2004;19(6):1450-1456.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Dr. Jennifer Olson for editorial assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Atala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Atala, A. (2011). Amniotic Fluid and Placenta Stem Cells. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_36

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics