Skip to main content

Use of Cord Blood in Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine Using Pregnancy-Specific Biological Substances
  • 766 Accesses

Abstract

It is estimated that up to 128 million individuals might benefit from regenerative medicine therapy, or almost one in three individuals in the USA. Multipotent stem cells are easily available in large numbers in umbilical cord blood (CB), and may be the best alternative to embryonic stem (ES) cells. CB stem cells are capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Thus, CB stem cells are amenable to treat a wide variety of diseases including cardiovascular, ophthalmic, orthopedic, neurological, and endocrine diseases. Examples of these usages currently in clinical trials include applications that affect the nervous and endocrine system, including cerebral palsy and type I diabetes. The numbers of such individuals affected with each of these diseases are estimated to be 10,000 annually. A summary of the initial beneficial results from such clinical trials using autologous CB stem cells will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CB:

Cord blood

CP:

Cerebral palsy

T1D:

Type I diabetes.

References

  1. Broxmeyer HE, Gluckman E, Auerbach A, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;8(supp 1):76.

    Article  PubMed  Google Scholar 

  2. Gluckman E, Broxmeyer HE, Auerbach A, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical cord blood from an HLA-identical sibling. N Eng J Med. 1989;321:1174-1178.

    Article  CAS  Google Scholar 

  3. Gluckman E. Stem cell harvesting from cord blood: a new perspective. In: Henon PR, Wunder EW, eds. Peripheral Blood Stem Cell Autografts. Berlin: Springer; 1990.

    Google Scholar 

  4. Broxmeyer HE, Kurtzburg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation: an expanded role for cord blood transplantation. Blood Cells. 1991;17:330-337.

    Google Scholar 

  5. Broxmeyer HE, Kurtzburg J, Gluckman E, et al. Umbilical cord blood hematopoietic stem and repopulating cells in human clinical transplantation. Blood Cells. 1991;17:313-330.

    CAS  PubMed  Google Scholar 

  6. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828-3832.

    Article  CAS  PubMed  Google Scholar 

  7. Vilmer E, Sterkers G, Rahimy C, et al. HLA-mismatched cord blood transplantation in a patient with advanced leukemia. Transplantation. 1992;53:1155-1157.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner JE, Kernan NA, Steinbuch M, et al. Allogeneic sibling umbilical cord blood transplantation in children with malignant and nonmalignant disease. Lancet. 1995;346:214-219.

    Article  CAS  PubMed  Google Scholar 

  9. Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood. 1993;81:1679-1690.

    CAS  PubMed  Google Scholar 

  10. Loper K. AABB Advancements in Cord Blood Transplantation. Available at: http://www.aabb.org/Content/Meetings_and_Events/Annual_Meeting_and_TXPO/61amonline/sunct1.htm. Accessed October 15, 2008.

  11. McGuckin C, Forraz N, Baradez MO, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245-255.

    Article  CAS  PubMed  Google Scholar 

  12. McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and neuroglial progenitors in vitro. Exp Cell Res. 2004;295:350-359.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers I, Yamanaka N, Bielecki R, et al. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res. 2007;313:1839-1852.

    Article  CAS  PubMed  Google Scholar 

  14. Kucia M, Halasa M, Wysoczynski M, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human umbilical cord blood-preliminary report. Leukemia. 2007;21:297-303.

    Article  CAS  PubMed  Google Scholar 

  15. Harris DT, He X, Badowski M, Nicols JC. In: Levicar N, Habib NA, Dimarakis I, Gordon MY, eds. Regenerative Medicine of the Eye: A Short Review. Stem Cell Repair & Regeneration. Vol. 3. London: Imperial College Press; 2008:211–225.

    Google Scholar 

  16. Harris DT, Badowski M, Ahmad N, Gaballa M. The potential of cord blood stem cells for use in regenerative medicine. Expert Opin Biol Ther. 2007;7(9):1311-1322.

    Article  CAS  PubMed  Google Scholar 

  17. Harris DT, Rogers I. Umbilical cord blood: a unique source of pluripotent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2:301-309.

    Article  CAS  PubMed  Google Scholar 

  18. Furfaro MEK, Gaballa MA. Do adult stem cells ameliorate the damaged myocardium? Is human cord blood a potential source of stem cells? Curr Vasc Pharm. 2007;5:27-44.

    Article  CAS  Google Scholar 

  19. Sunkomat JNE, Goldman S, Harris DT, et al. Cord blood-derived MNCs delivered intracoronary contribute differently to vascularization compared to CD34+ cells in the rat model of acute ischemia. J Mol Cell Cardiol. 2007;42(6 Suppl 1):S97.

    Article  Google Scholar 

  20. Botta R, Gao E, Stassi G, et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells ad low dose CD34 + KDR + cells. FASEB J. 2004;18:1392-1394.

    CAS  PubMed  Google Scholar 

  21. Henning RJ, Abu-Ali H, Balis JU, et al. Human umbilical cord blood mononuclear cells for treatment of acute myocardial infarction. Cell Transplant. 2004;13:729-739.

    Article  PubMed  Google Scholar 

  22. Chen HK, Hung HF, Shyu KG, et al. Combined cord blood cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 2005;35:677-686.

    Article  CAS  PubMed  Google Scholar 

  23. Hirata Y, Sata M, Motomura N, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327:609-614.

    Article  CAS  PubMed  Google Scholar 

  24. Kim BO, Tian H, Prasongsukarn K, et al. Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation. 2006;112 (9 Suppl):196-204.

    Google Scholar 

  25. Leor J, Guetta E, Feinberg MS, et al. Human umbilical cord blood-derived CD133+ cells enhance function and repair of the infracted myocardium. Stem Cells. 2006;24(3):772-780.

    Article  PubMed  Google Scholar 

  26. Ma N, Stamm C, Kaminski A, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid mice. Cardiovasc Res. 2005;66:45-54.

    Article  CAS  PubMed  Google Scholar 

  27. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. 2005;102:11474-11479.

    Article  CAS  PubMed  Google Scholar 

  28. Bonnano G, Mariotti A, Procoli A, et al. Human cord blood CD133+ cells imunoselected by a clinical-grade apparatus differentiate in vitro into endothelial- and cardiomyocyte-like cells. Transfusion. 2007;47:280-289.

    Article  Google Scholar 

  29. Schmidt D, Breymann Y, Weber A, et al. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Soc Thorac Surg. 2004;78:2094-2098.

    Article  Google Scholar 

  30. Murga M, Yao L, Tosato G. Derivation of endothelial cells from CD34– umbilical cord blood. Stem Cells. 2004;22:385-395.

    Article  CAS  PubMed  Google Scholar 

  31. Hoerstrup SP, Kadner A, Breymann CI, et al. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg. 2002;74:46-52.

    Article  PubMed  Google Scholar 

  32. Schmidt D, Mol A, Neuenschwander S, et al. Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg. 2005;27:795-800.

    Article  PubMed  Google Scholar 

  33. Murohara T, Ikeda H, Duan A, et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest. 2000;105:1527-1536.

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg JL, Laughlin MJ. UC blood hematopoietic stem cells and therapeutic angiogenesis. Cytotherapy. 2007;9(1):4-13.

    Article  CAS  PubMed  Google Scholar 

  35. Nieda M, Nicol A, Denning-Kendall P, et al. Endothelial cell precursors are normal components of human umbilical cord blood. Br J Hematol. 1997;98:775-777.

    Article  CAS  Google Scholar 

  36. Murohara T. Therapeutic vasculogenesis using human cord blood-derived endothelial progenitors. Trends Cardiovasc Med. 2001;11:303-307.

    Article  CAS  PubMed  Google Scholar 

  37. Ikeda Y, Fukada N, Wada M, et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res. 2004;27(2):119-128.

    Article  CAS  PubMed  Google Scholar 

  38. Cho S-W, Gwak S-J, Kang S-W, et al. Enhancement of angiogenic efficacy of human cord blood cell transplantation. Tissue Eng. 2006;12(6):1651-1661.

    Article  CAS  PubMed  Google Scholar 

  39. Finney MR, Greco NJ, Haynesworth SE, et al. Direct comparison of umbilical cord blood versus bone marrow-derived endothelial precursor cells in mediating neovascularization in response to vascular ischemia. Biol Blood Marrow Transplant. 2006;12:585-593.

    Article  PubMed  Google Scholar 

  40. Pesce M, Orlandi A, Iachinioto MG, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissue. Circ Res. 2003;93:51-62.

    Article  Google Scholar 

  41. Voltarelli JC, Couri CEB, Stracieri ABP, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297(14):1568-1576.

    Article  CAS  PubMed  Google Scholar 

  42. US National Institutes of Health. Umbilical cord blood infusion to treat type 1 diabetes. Available at: http://www.clinicaltrials.gov/ct/show/NCT00305344?order=1. Accessed September 20, 2006.

  43. Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol. 2008;36(6):710-715.

    Article  CAS  PubMed  Google Scholar 

  44. Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulinitis in type 1 diabetic mice. Biochem Biophys Res Commun. 2004;325:665-669.

    Article  CAS  PubMed  Google Scholar 

  45. Ende N, Chen R, Mack R. NOD/LtJ type I diabetes in mice and the effect of stem cells (Berashis) derived from human umbilical cord blood. J Med. 2002;33:181-187.

    PubMed  Google Scholar 

  46. Harris DT, M Badowski and SM Harman. Treatment of type I diabetes in the NOD mouse with syngeneic cord blood stem cells. Submitted, Open Stem Cell J. 2009;1:62-68, doi: 10.2174/1876893800901010062

    Google Scholar 

  47. Sun B, Roh K-H, Lee S-R, Lee Y-S, Kang K-S. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structures. Biochem Biophys Res Commun 2007: doi: 10.1016/j.bbrc, 2007.01.069.

    Google Scholar 

  48. Denner L, Bodenburg Y, Zhao JG, et al. Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cell Prolif. 2007;40(3):367-380.

    Article  CAS  PubMed  Google Scholar 

  49. Jang YK, Park JJ, Lee MC, et al. Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res. 2004;75:573-584.

    Article  CAS  PubMed  Google Scholar 

  50. Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K. Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Develop. 2006;15:391-406.

    Article  CAS  Google Scholar 

  51. Chen N, Hudson JE, Walczak P, et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005;23:1560-1570.

    Article  CAS  PubMed  Google Scholar 

  52. Harris DT, Ahmad N, Saxena SK et al. The potential of cord blood stem cells for use in tissue engineering. Abstract, International TESi meeting, Oct 2005 Shanghai, China.

    Google Scholar 

  53. Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32:2682-2688.

    Article  CAS  PubMed  Google Scholar 

  54. Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296-307.

    Article  CAS  PubMed  Google Scholar 

  55. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke. 2004;35:2385-2389.

    Article  PubMed  Google Scholar 

  56. Newman MB, Willing AE, Manressa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201-208.

    Article  CAS  PubMed  Google Scholar 

  57. Vendrame M, Cassady J, Newcomb J, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35:2390-2395.

    Article  PubMed  Google Scholar 

  58. Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14:722-733.

    Article  CAS  PubMed  Google Scholar 

  59. Newcomb JD, Ajrno CT, Sanberg CD, et al. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15:213-223.

    Article  PubMed  Google Scholar 

  60. Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci. 2005;1049(1):84-96.

    Article  PubMed  Google Scholar 

  61. Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;38:817-826.

    Article  PubMed  Google Scholar 

  62. Saporta S, Kim JJ, Willing AE, et al. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res. 2003;12:271-278.

    Article  CAS  PubMed  Google Scholar 

  63. Kuh SU, Cho YE, Yoon DH, et al. Functional recovery after human umbilical cord blood cells transplantation with brain derived-neurotropic factor into the spinal cord injured rats. Acta Neurochir (Wein). 2005;14:985-992.

    Article  Google Scholar 

  64. Kang KS, Kim SW, Oh YH, et al. Thirty-seven-year old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood with improved sensory perception and mobility, both functionally and morphologically: a case study. Cytotherapy. 2005;7:368-373.

    Article  PubMed  Google Scholar 

  65. Lu D, Sanberg PR, Mahmood A, et al. Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant. 2002;11:275-281.

    PubMed  Google Scholar 

  66. Meier C, Middleanis J, Wasielewski B, et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Ped Res. 2006;59:244-249.

    Article  Google Scholar 

  67. Ende N, Chen R. Parkinson’s disease mice and human umbilical cord blood. J Med. 2002;33:173-180.

    PubMed  Google Scholar 

  68. Gaebuzova-Davis S, Willing AE, Zigova T. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12:255-270.

    Article  Google Scholar 

  69. Germain L, Auger FA, Grandbois E, et al. Reconstructed human cornea produced in vitro by tissue engineering. Pathobiology. 1999;67:140-147.

    Article  CAS  PubMed  Google Scholar 

  70. Germain L, Carrier P, Auger FA, Salesse C, Guerin SL. Can we produce a human corneal equivalent by tissue engineering? Prog Retin Eye Res. 2000;19(5):497-527.

    Article  CAS  Google Scholar 

  71. Harris DT, He X, Camacho D, Gonzalez V, Nichols JC. The potential of cord blood stem cells for use in tissue engineering of the eye, Stem Cells & Regenerative Medicine, Jan 23–25, 2006, San Francisco, Abstract

    Google Scholar 

  72. Nichols JC, He X, Harris DT. Differentiation of cord blood stem cells into corneal epithelium. Invest Ophthalmol Vis Sci. 2005;46:E-Abstract–4772.

    Google Scholar 

  73. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196:245-250.

    Article  CAS  PubMed  Google Scholar 

  74. Valbonesi M, Giannini G, Migliori F, Dalla Costa R, Dejana AM. Cord blood (CB) stem cells for wound repair. Preliminary report of 2 cases. Transfus Apher Sci. 2004;30(2):153-156.

    Article  CAS  PubMed  Google Scholar 

  75. Harting MT, Baumgartner JE, Worth LL, et al. Cell therapies for traumatic brain injury. Neurosurg Focus. 2008;24(3–4):E18.

    Article  PubMed  Google Scholar 

  76. Revoltella RP, Papini S, Rosellini A, et al. Cochlear repair by transplantation of human cord blood CD133+ cells to nod-scid mice made deaf with kanamycin and noise. Cell Transplant. 2008;17:665-678.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The funding by The Jerome Lejeune Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Harris, D.T. (2011). Use of Cord Blood in Regenerative Medicine. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_32

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics