Skip to main content

Umbilical Cord-Derived Mesenchymal Stem Cells

  • Chapter
  • First Online:
Regenerative Medicine Using Pregnancy-Specific Biological Substances

Abstract

Hematopoiesis is a time- and site-dependent event ­during ontogeny of vertebrates. The first wave of hematopoietic activity appears in the ventral blood islands of the yolk sac, where primitive nucleated erythrocytes are formed to control the oxygen demand of the growing embryo. A second wave of primitive hematopoiesis (aorta-gonads-mesonephros, AGM region) is continued by a shift to the fetal liver where production of all hematopoietic cells is initiated. From near birth until the end of life, hematopoiesis resides in the bone marrow. Thus, embryonic, fetal, and adult hematopoieses are associated with a common stem cell, which, during each migratory event, reaches the specific milieu that is permissive for the programmed and sequential expression of the different forms of hematopoiesis.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tavassoli M. Embryonic and fetal hemopoiesis: an overview. Blood Cells. 1991;17:269-281.

    CAS  PubMed  Google Scholar 

  2. Isern J, Fraser ST, He Z, Baron MH. The fetal liver is a niche for maturation of primitive erythroid cells. PNAS. 2008;105:6662-6667.

    Article  CAS  PubMed  Google Scholar 

  3. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haemat. 2000;109:235-242.

    Article  CAS  Google Scholar 

  4. Christensen JL, Wright DE, Wagers AJ, Weissman IL. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol. 2004;2:e75.

    Article  PubMed  Google Scholar 

  5. Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells. 2005;23:879-894.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen Huu S, Dubernard G, Aractingi S, Khosrotehrani K. Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev. 2006;2:111-116.

    PubMed  Google Scholar 

  7. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity. 2003;19:257-267.

    Article  CAS  PubMed  Google Scholar 

  8. Knudtzon S. In vitro growth of granulocyte colonies from circulating cells in human cord blood. Blood. 1974;43:357-361.

    CAS  PubMed  Google Scholar 

  9. Leary AG, Ogawa M. Blast cell colony assay for umbilical cord blood and adult bone marrow progenitors. Blood. 1987;69:953-956.

    CAS  PubMed  Google Scholar 

  10. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324.

    Article  CAS  PubMed  Google Scholar 

  11. Shields LE, Andrews RG. Gestational age changes in circulating CD34+ hematopoietic stem/progenitor cells in fetal cord blood. Am J Obstet Gynecol. 1998;178:931-937.

    Article  CAS  PubMed  Google Scholar 

  12. Badillo AT, Flake AW. The regulatory role of stromal microenvironments in fetal hematopoietic ontogeny. Stem Cell Rev. 2006;2:241-246.

    Article  PubMed  Google Scholar 

  13. Garcia Marquez G. Chronicle of a Death Foretold (A masterpiece novel by the Nobel Laureate in Literature). New York: Alfred A. Knopf; 1982.

    Google Scholar 

  14. Martin MA, Bhatia M. Analysis of the human fetal liver hematopoietic. Stem Cells Dev. 2005;14:493-504.

    Article  CAS  PubMed  Google Scholar 

  15. Charbord P, Tavian M, Humeau L, Péault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood. 1996;88:4072-4078.

    Google Scholar 

  16. Heissig B, Ohki Y, Sato Y, Rafii S, Werb Z, Hattori K. A role for niches in hematopoietic cell development. Hematology. 2005;10(3):247-253.

    Article  CAS  PubMed  Google Scholar 

  17. McGrath K, Palis J. Ontogeny of erythropoiesis in the mammalian embryo. Curr Top Dev Biol. 2008;82:1-22.

    Article  CAS  PubMed  Google Scholar 

  18. Tavassoli M, Minguell JJ. Homing of hemopoietic rogenitor cells to the marrow. Proc Soc Exp Biol Med. 1991;196:367-373.

    CAS  PubMed  Google Scholar 

  19. Weisel KC, Gao Y, Shieh JH, Moore MA. Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol. 2006;34:1505-1516.

    Article  CAS  PubMed  Google Scholar 

  20. Conget P, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999;181:67-73.

    Article  CAS  PubMed  Google Scholar 

  21. Pittenger MF, Mackay AM, Beck CB, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-147.

    Article  CAS  PubMed  Google Scholar 

  22. Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625-634.

    Article  PubMed  Google Scholar 

  23. Hutson EL, Boyer S, Genever PG. Rapid isolation, expansion, and differentiation of osteoprogenitors from full-term umbilical cord blood. Tissue Eng. 2005;11:1407-1420.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JW, Kim SY, Park SY, et al. Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol. 2004;83:733.

    Article  CAS  PubMed  Google Scholar 

  25. Markov V, Kusumi K, Tadesse MG, et al. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev. 2007;16:53-73.

    Article  CAS  PubMed  Google Scholar 

  26. Parekkadan B, Sethu P, van Poll D, Yarmush ML, Toner M. Osmotic selection of human mesenchymal stem/progenitor cells from umbilical cord blood. Tissue Eng. 2007;13:2465-2473.

    Article  CAS  PubMed  Google Scholar 

  27. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med. 2001;226:507-520.

    CAS  Google Scholar 

  28. Roux S, Quinn J, Pichaud F, et al. Human cord blood monocytes undergo terminal osteoclast differentiation in vitro in the presence of culture medium conditioned by giant cell tumor of bone. J Cell Physiol. 1996;168:489-498.

    Article  CAS  PubMed  Google Scholar 

  29. Yu M, Xiao Z, Shen L, Li L. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol. 2004;124:666-675.

    Article  PubMed  Google Scholar 

  30. Wyrsch A, dalle Carbonare V, Jansen W, et al. Umbilical cord blood from preterm human fetuses is rich in committed and primitive hematopoietic progenitors with high proliferative and self-renewal capacity. Exp Hematol. 1999;27:1338-1345.

    Article  CAS  PubMed  Google Scholar 

  31. Wang JF, Wang LJ, Wu YF, et al. Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica. 2004;89:837-844.

    CAS  PubMed  Google Scholar 

  32. Jeong JA, Gang EJ, Hong SH, et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport. 2004;15:1731-1734.

    Article  CAS  PubMed  Google Scholar 

  33. Kang JH, Lee CK, Kim JR, et al. Estrogen stimulates the neuronal differentiation of human umbilical cord blood mesenchymal stem cells. Neuroreport. 2007;18:35-38.

    Article  CAS  PubMed  Google Scholar 

  34. Li N, Feugier P, Serrurrier B, Latger-Cannard V, Lesesve JF, Stoltz JF. Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood ­progenitor cells and decrease their allostimulatory capacity. Exp Hematol. 2007;35:507-515.

    Article  CAS  PubMed  Google Scholar 

  35. Wagner W, Wein F, Roderburg C, et al. Adhesion of hematopoietic progenitor cells to human mesenchymal stem cells as a model for cell−cell interaction. Exp Hematol. 2007;35:314-332.

    Article  CAS  PubMed  Google Scholar 

  36. Parolini O, Alviano F, Bagnara GP, et al. Isolation and characterization of cells from human term placenta. Stem Cells. 2008;26:300-311.

    Article  PubMed  Google Scholar 

  37. Alviano F, Fossati V, Marchionni C, et al. Term Amniotic membrane is a high throughput source for multipotent ­mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.

    Article  PubMed  Google Scholar 

  38. Portmann-Lanz CB, Schoeberlein A, Huber A, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664-673.

    Article  CAS  PubMed  Google Scholar 

  39. Soncini M, Vertua E, Gibelli L, et al. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1:296-305.

    Article  CAS  PubMed  Google Scholar 

  40. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis – supportive function and other potentials. Haematologica. 2006;91:1017-1026.

    CAS  PubMed  Google Scholar 

  41. Kolf CM, Cho E, Tuan RS. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9:204.

    Article  PubMed  Google Scholar 

  42. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med. 2006;231:39-49.

    CAS  Google Scholar 

  43. Clinical trials, 2008. www.clinicaltrials.gov. Identifier NCT # 00555828, 00548613, 00587990.

  44. Feldmann RE Jr, Bieback K, Maurer MH, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis. 2005;26:2749-2758.

    Article  CAS  PubMed  Google Scholar 

  45. Yong KL, Fahey A, Pahal G, et al. Fetal haemopoietic cells display enhanced migration across endothelium. Br J Haematol. 2002;116:392-400.

    Article  PubMed  Google Scholar 

  46. Erices EA, Allers CI, Conget PA, Rojas CV, Minguell JJ. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant. 2003;12:555-561.

    PubMed  Google Scholar 

  47. Jäger M, Degistirici O, Knipper A, Fischer J, Sager M, Krauspe R. Bone healing and migration of cord ­blood-derived stem cells into a critical size femoral defect after ­xenotransplantation. J Bone Miner Res. 2007;22:1224-1233.

    Article  PubMed  Google Scholar 

  48. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003;32:265-272.

    Article  CAS  PubMed  Google Scholar 

  49. Gotherstrom C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K. Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol. 2004;190:239-245.

    Article  CAS  PubMed  Google Scholar 

  50. Tisato V, Naresh K, Girdlestone J, Navarrete C, Dazzi F. Mesenchymal stem cells of cord blood origin are effective at preventing but not treating graft-versus-host disease. Leukemia. 2007;21:1992-1999.

    Article  CAS  PubMed  Google Scholar 

  51. Reinisch A, Bartmann C, Rohde E, et al. Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med. 2007;2:371-382.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose J. Minguell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Minguell, J.J. (2011). Umbilical Cord-Derived Mesenchymal Stem Cells. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_25

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics