Skip to main content

Human Umbilical Cord Blood Cells for Stroke

  • Chapter
  • First Online:
Regenerative Medicine Using Pregnancy-Specific Biological Substances

Abstract

Stroke causes irreversible and permanent damage in the brain immediately adjacent to the region of reduced blood perfusion. During a stroke, every second means the death of 32,000 neurons, that is, 1.9 million cells every minute. In that same minute, the brain loses 14 billion synapses and 7.5 miles of myelinated fibers. Regenerative immediate action is fundamental. Currently, the only effective treatment for stroke, tissue-plasminogen activator, has a very narrow therapeutic window. These disappointing outcomes clearly solicit developing any therapeutic modality, especially cell-based therapy. Human umbilical cord blood (HUCB) cells, because of their primitive nature and ability to differentiate into various nonhematopoietic cells, including neural cells, may be useful as an alternative target for cell-based therapies requiring either the replacement of lost cells and/or substitution of missing substances. Over the past several years, our team and others have investigated the therapeutic potential of mononuclear cells found within cord blood for stroke and other neurological disorders. We have demonstrated that systemic administration of HUCB cells provides significant benefit in stroke models of neural degeneration. Interestingly, it is more likely that the indirect neurotrophic effects from these cells such as release of various growth or antiinflammatory factors affording neural protection and promoting immunomodulatory benefits may be the underlying mechanism rather than direct neural replacement. These protective and restorative effects may prove critical to preserving tissue integrity over the course of a stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armitage JO. Bone marrow transplantation. N Engl J Med. 1994;330(12):827-838.

    Article  CAS  PubMed  Google Scholar 

  2. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood. 2000;95(8):2484-2490.

    CAS  PubMed  Google Scholar 

  3. Asseman C, Powrie F. Interleukin 10 is a growth factor for a population of regulatory T cells. Gut. 1998;42(2):157-158.

    Article  CAS  PubMed  Google Scholar 

  4. Babcock AA, Kuziel WA, Rivest S, Owens T. Chemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci. 2003;23(21):7922-7930.

    CAS  PubMed  Google Scholar 

  5. Baizabal JM, Furlan-Magaril M, Santa-Olalla J, Covarrubias L. Neural stem cells in development and regenerative medicine. Arch Med Res. 2003;34(6):572-588.

    Article  CAS  PubMed  Google Scholar 

  6. Behzad-Behbahani A, Pouransari R, Tabei SZ, et al. Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transplant Proc. 2005;37(7):3211-3212.

    Article  CAS  PubMed  Google Scholar 

  7. Bernal GM, Peterson DA. Neural stem cells as therapeutic agents for age-related brain repair. Aging Cell. 2004;3(6):345-351.

    Article  CAS  PubMed  Google Scholar 

  8. Bicknese AR, Goodwin HS, Quinn CO, Henderson VC, Chien SN, Wall DA. Human umbilical cord blood cells can be induced to express markers for neurons and glia. Cell Transplant. 2002;11(3):261-264.

    PubMed  Google Scholar 

  9. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999;283(5401):534-537.

    Article  CAS  PubMed  Google Scholar 

  10. Broxmeyer HE, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA. 1992;89(9):4109-4113.

    Article  CAS  PubMed  Google Scholar 

  11. Buelens C, Willems F, Delvaux A, et al. Interleukin-10 ­differentially regulates B7–1 (CD80) and B7–2 (CD86) expression on human peripheral blood dendritic cells. Eur J Immunol. 1995;25(9):2668-2672.

    Article  CAS  PubMed  Google Scholar 

  12. Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci. 2002;115(Pt 10):2131-2138.

    CAS  PubMed  Google Scholar 

  13. Cameron HA, McKay R. Stem cells and neurogenesis in the adult brain. Curr Opin Neurobiol. 1998;8(5):677-680.

    Article  CAS  PubMed  Google Scholar 

  14. Cardoso AA, Li ML, Batard P, et al. Release from quiescence of CD34+ CD38− human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci USA. 1993;90(18):8707-8711.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32(4):1005-1011.

    CAS  PubMed  Google Scholar 

  16. Chen J, Sanberg PR, Li Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682-2688.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92(6):692-699.

    Article  CAS  PubMed  Google Scholar 

  18. Chen N, Hudson JE, Walczak P, et al. Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural. Stem Cells. 2005;23(10):1560-1570.

    Article  CAS  PubMed  Google Scholar 

  19. Chen N, Kamath S, Newcomb J, et al. Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. J Neural Eng. 2007;4(2):130-145.

    Article  PubMed  Google Scholar 

  20. Chen SH, Chang FM, Tsai YC, Huang KF, Lin CL, Lin MT. Infusion of human umbilical cord blood cells protect against cerebral ischemia and damage during heatstroke in the rat. Exp Neurol. 2006;199(1):67-76.

    Article  CAS  PubMed  Google Scholar 

  21. Chen X, Li Y, Wang L, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology. 2002;22(4):275-279.

    Article  PubMed  Google Scholar 

  22. Chivu M, Diaconu CC, Bleotu C, Alexiu I, Brasoveanu L, Cernescu C. The comparison of different protocols for expansion of umbilical-cord blood hematopoietic stem cells. J Cell Mol Med. 2004;8(2):223-231.

    Article  CAS  PubMed  Google Scholar 

  23. Clemens JA. Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Radic Biol Med. 2000;28(10):1526-1531.

    Article  CAS  PubMed  Google Scholar 

  24. Conrad PD, Emerson SG. Ex vivo expansion of hematopoietic cells from umbilical cord blood for clinical transplantation. J Leukoc Biol. 1998;64(2):147-155.

    CAS  PubMed  Google Scholar 

  25. D’Arena G, Musto P, Cascavilla N, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. 1998;83(3):197-203.

    PubMed  Google Scholar 

  26. Daar AS, Bhatt A, Court E, Singer PA. Stem cell research and transplantation: science leading ethics. Transplant Proc. 2004;36(8):2504-2506.

    Article  CAS  PubMed  Google Scholar 

  27. El-Badri NS, Hakki A, Saporta S, et al. Cord blood mesenchymal stem cells: potential use in neurological disorders. Stem Cells Dev. 2006;15(4):497-506.

    Article  CAS  PubMed  Google Scholar 

  28. El Marsafy S, Dosquet C, Coudert MC, Bensussan A, Carosella E, Gluckman E. Study of cord blood natural killer cell suppressor activity. Eur J Haematol. 2001;66(4):215-220.

    Article  CAS  PubMed  Google Scholar 

  29. Emerich DF, Dean III RL, Bartus RT. The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp Neurol. 2002;173(1):168-181.

    Article  PubMed  Google Scholar 

  30. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528-1530.

    Article  CAS  PubMed  Google Scholar 

  31. Frassoni F, Podesta M, Maccario R, et al. Cord blood transplantation provides better reconstitution of hematopoietic reservoir compared with bone marrow transplantation. Blood. 2003;102(3):1138-1141.

    Article  CAS  PubMed  Google Scholar 

  32. Galli R, Borello U, Gritti A, et al. Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci. 2000;3(10):986-991.

    Article  CAS  PubMed  Google Scholar 

  33. Garbuzova-Davis S, Willing AE, Saporta S, et al. Novel cell therapy approaches for brain repair. Prog Brain Res. 2006;157:207-222.

    Article  CAS  PubMed  Google Scholar 

  34. Garbuzova-Davis S, Willing AE, Zigova T, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12(3):255-270.

    Article  CAS  PubMed  Google Scholar 

  35. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol. 1994;144(1):188-199.

    CAS  PubMed  Google Scholar 

  36. Garderet L, Dulphy N, Douay C, et al. The umbilical cord blood alphabeta T-cell repertoire: characteristics of a polyclonal and naive but completely formed repertoire. Blood. 1998;91(1):340-346.

    CAS  PubMed  Google Scholar 

  37. Glabinski AR, Tuohy VK, Ransohoff RM. Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation. 1998;5(3–4):166-171.

    Article  CAS  PubMed  Google Scholar 

  38. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321(17):1174-1178.

    Article  CAS  PubMed  Google Scholar 

  39. Gluckman E, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7(3):219-227.

    Article  CAS  PubMed  Google Scholar 

  40. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med. 1997;337(6):373-381.

    Article  CAS  PubMed  Google Scholar 

  41. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant. 2001;7(11):581-588.

    Article  CAS  PubMed  Google Scholar 

  42. Gritti A, Vescovi AL, Galli R. Adult neural stem cells: plasticity and developmental potential. J Physiol Paris. 2002;96(1–2):81-90.

    Article  CAS  PubMed  Google Scholar 

  43. Ha Y, Choi JU, Yoon DH, et al. Neural phenotype expression of cultured human cord blood cells in vitro. Neuroreport. 2001;12(16):3523-3527.

    Article  CAS  PubMed  Google Scholar 

  44. Hao SG, Sun GL, Wu WL, Wu YL. Studies on the dynamics of biological characteristics of CD133+ cells from human umbilical cord blood during short-term culture. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2003;11(6):569-575.

    PubMed  Google Scholar 

  45. Harris DT, Schumacher MJ, Locascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci USA. 1992;89(21):10006-10010.

    Article  CAS  PubMed  Google Scholar 

  46. Henon PR. Human embryonic or adult stem cells: an overview on ethics and perspectives for tissue engineering. Adv Exp Med Biol. 2003;534:27-45.

    PubMed  Google Scholar 

  47. Hirose Y, Kiyoi H, Itoh K, Kato K, Saito H, Naoe T. B-cell precursors differentiated from cord blood CD34+ cells are more immature than those derived from granulocyte colony-stimulating factor-mobilized peripheral blood CD34+ cells. Immunology. 2001;104(4):410-417.

    Article  CAS  PubMed  Google Scholar 

  48. Hows JM, Bradley BA, Marsh JC, et al. Growth of human umbilical-cord blood in longterm haemopoietic cultures. Lancet. 1992;340(8811):73-76.

    Article  CAS  PubMed  Google Scholar 

  49. Jaroscak J, Goltry K, Smith A, et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood. 2003;101(12):5061-5067.

    Article  CAS  PubMed  Google Scholar 

  50. Jeong JA, Gang EJ, Hong SH, et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport. 2004;15(11):1731-1734.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang L, Newman M, Saporta S, et al. MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke. Curr Neurovasc Res. 2008;5(2):118-124.

    Article  CAS  PubMed  Google Scholar 

  52. Jurga M, Markiewicz I, Sarnowska A, et al. Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J Neurosci Res. 2006;83(4):627-637.

    Article  CAS  PubMed  Google Scholar 

  53. Kernan NA, Bartsch G, Ash RC, et al. Analysis of 462 transplantations from unrelated donors facilitated by the National Marrow Donor Program. N Engl J Med. 1993;328(9):593-602.

    Article  CAS  PubMed  Google Scholar 

  54. Knutsen AP, Wall DA. Kinetics of T-cell development of umbilical cord blood transplantation in severe T-cell immunodeficiency disorders. J Allergy Clin Immunol. 1999;103(5 Pt 1):823-832.

    Article  CAS  PubMed  Google Scholar 

  55. Kobari L, Giarratana MC, Pflumio F, Izac B, Coulombel L, Douay L. CD133+ cell selection is an alternative to CD34+ cell selection for ex vivo expansion of hematopoietic stem cells. J Hematother Stem Cell Res. 2001;10(2):273-281.

    Article  CAS  PubMed  Google Scholar 

  56. Ladeby R, Wirenfeldt M, Garcia-Ovejero D, et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev. 2005;48(2):196-206.

    Article  CAS  PubMed  Google Scholar 

  57. Laughlin MJ, Barker J, Bambach B, et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 2001;344(24):1815-1822.

    Article  CAS  PubMed  Google Scholar 

  58. Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351(22):2265-2275.

    Article  CAS  PubMed  Google Scholar 

  59. Lee KD, Kuo TK, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004;40(6):1275-1284.

    Article  CAS  PubMed  Google Scholar 

  60. Liao SL, Chen WY, Raung SL, Kuo JS, Chen CJ. Association of immune responses and ischemic brain infarction in rat. Neuroreport. 2001;12(9):1943-1947.

    Article  CAS  PubMed  Google Scholar 

  61. Lie DC, Song H, Colamarino SA, Ming GL, Gage FH. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol. 2004;44:399-421.

    Article  CAS  PubMed  Google Scholar 

  62. Liesveld JL. When what you have is not enough: optimizing cord blood transplantation in adults. Leuk Res. 2003;27(3):197-199.

    Article  PubMed  Google Scholar 

  63. Liu Y, Liu T, Fan X, Ma X, Cui Z. Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol. 2006;124(3):592-601.

    Article  CAS  PubMed  Google Scholar 

  64. Ma Y, Zou P, Xiao J, Huang S. The expression and functional characteristics of AC133 antigen in cord blood hematopoietic cells. Zhonghua Nei Ke Za Zhi. 2002;41(12):798-800.

    CAS  PubMed  Google Scholar 

  65. Marler JR, Goldstein LB. Medicine. Stroke--tPA and the clinic. Science. 2003;301(5640):1677.

    Article  CAS  PubMed  Google Scholar 

  66. McGuckin CP, Forraz N, Allouard Q, Pettengell R. Umbilical cord blood stem cells can expand hematopoietic and ­neuroglial progenitors in vitro. Exp Cell Res. 2004;295(2):350-359.

    Article  CAS  PubMed  Google Scholar 

  67. Mikami T, Eguchi M, Kurosawa H, et al. Ultrastructural and cytochemical characterization of human cord blood cells. Med Electron Microsc. 2002;35(2):96-101.

    Article  PubMed  Google Scholar 

  68. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70(6):1324-1328.

    Article  CAS  PubMed  Google Scholar 

  69. Nayar B, Raju GM, Deka D. Hematopoietic stem/progenitor cell harvesting from umbilical cord blood. Int J Gynaecol Obstet. 2002;79(1):31-32.

    Article  CAS  PubMed  Google Scholar 

  70. Newcomb JD, Ajmo CT Jr, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 2006;15(3):213-223.

    Article  PubMed  Google Scholar 

  71. Newcomb JD, Sanberg PR, Klasko SK, Willing AE. Umbilical cord blood research: current and future perspectives. Cell Transplant. 2007;16(2):151-158.

    PubMed  Google Scholar 

  72. Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR. Stroke-induced migration of human umbilical cord blood cells: time course and cytokines. Stem Cells Dev. 2005;14(5):576-586.

    Article  CAS  PubMed  Google Scholar 

  73. Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: implications for brain repair. Exp Neurol. 2006;199(1):201-208.

    Article  CAS  PubMed  Google Scholar 

  74. NINDS. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581-1587.

    Article  Google Scholar 

  75. Parent JM. Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist. 2003;9(4):261-272.

    Article  PubMed  Google Scholar 

  76. Petersen BE, Bowen WC, Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284(5417):1168-1170.

    Article  CAS  PubMed  Google Scholar 

  77. Pranke P, Failace RR, Allebrandt WF, Steibel G, Schmidt F, Nardi NB. Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematol. 2001;105(2):71-76.

    Article  CAS  PubMed  Google Scholar 

  78. Rainsford E, Reen DJ. Interleukin 10, produced in abundance by human newborn T cells, may be the regulator of increased tolerance associated with cord blood stem cell transplantation. Br J Haematol. 2002;116(3):702-709.

    Article  CAS  PubMed  Google Scholar 

  79. Ramsay NK, Davies S, Wagner J, McGough E, McGlave PB. Bone marrow transplantation. New strategies for treating malignant disease. Minn Med. 1996;79(4):23-28.

    CAS  PubMed  Google Scholar 

  80. Riaz SS, Jauniaux E, Stern GM, Bradford HF. The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro. Brain Res Dev Brain Res. 2002;136(1):27-34.

    Article  CAS  PubMed  Google Scholar 

  81. Robinson S, Niu T, de Lima M, et al. Ex vivo expansion of umbilical cord blood. Cytotherapy. 2005;7(3):243-250.

    Article  CAS  PubMed  Google Scholar 

  82. Rocha V, Cornish J, Sievers EL, et al. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood. 2001;97(10):2962-2971.

    Article  CAS  PubMed  Google Scholar 

  83. Rocha V, Wagner JE Jr, Sobocinski KA, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342(25):1846-1854.

    Article  CAS  PubMed  Google Scholar 

  84. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25-e146.

    Article  PubMed  Google Scholar 

  85. Rubinstein P, Carrier C, Scaradavou A, et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med. 1998;339(22):1565-1577.

    Article  CAS  PubMed  Google Scholar 

  86. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247-256.

    Article  CAS  PubMed  Google Scholar 

  87. Sanchez-Ramos JR, Song S, Kamath SG, et al. Expression of neural markers in human umbilical cord blood. Exp Neurol. 2001;171(1):109-115.

    Article  CAS  PubMed  Google Scholar 

  88. Sathananthan AH, Trounson A. Human embryonic stem cells and their spontaneous differentiation. Ital J Anat Embryol. 2005;110(2 Suppl 1):151-157.

    CAS  PubMed  Google Scholar 

  89. Savitz SI, Dinsmore JH, Wechsler LR, Rosenbaum DM, Caplan LR. Cell therapy for stroke. NeuroRx. 2004;1(4):406-414.

    Article  PubMed  Google Scholar 

  90. Shih CC, DiGiusto D, Forman SJ. Ex vivo expansion of transplantable human hematopoietic stem cells: where do we stand in the year 2000? J Hematother Stem Cell Res. 2000;9(5):621-628.

    Article  CAS  PubMed  Google Scholar 

  91. Shirvaikar N, Reca R, Jalili A, et al. CFU-megakaryocytic progenitors expanded ex vivo from cord blood maintain their in vitro homing potential and express matrix metalloproteinases. Cytotherapy. 2008;10(2):182-192.

    Article  CAS  PubMed  Google Scholar 

  92. Sirchia G, Rebulla P. Placental/umbilical cord blood transplantation. Haematologica. 1999;84(8):738-747.

    CAS  PubMed  Google Scholar 

  93. Slusher BS, Vornov JJ, Thomas AG, et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med. 1999;5(12):1396-1402.

    Article  CAS  PubMed  Google Scholar 

  94. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol. 1999;57(6):563-581.

    Article  CAS  PubMed  Google Scholar 

  95. Taguchi A, Soma T, Tanaka H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330-338.

    CAS  PubMed  Google Scholar 

  96. Tamaki S, Eckert K, He D, et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res. 2002;69(6):976-986.

    Article  CAS  PubMed  Google Scholar 

  97. Tan J, Town T, Paris D, et al. Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science. 1999;286(5448):2352-2355.

    Article  CAS  PubMed  Google Scholar 

  98. Thomson BG, Robertson KA, Gowan D, et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood. 2000;96(8):2703-2711.

    CAS  PubMed  Google Scholar 

  99. Todaro AM, Pafumi C, Pernicone G, et al. Haematopoietic progenitors from umbilical cord blood. Blood Purif. 2000;18(2):144-147.

    Article  CAS  PubMed  Google Scholar 

  100. Traycoff CM, Abboud MR, Laver J, Clapp DW, Srour EF. Rapid exit from G0/G1 phases of cell cycle in response to stem cell factor confers on umbilical cord blood CD34+ cells an enhanced ex vivo expansion potential. Exp Hematol. 1994;22(13):1264-1272.

    CAS  PubMed  Google Scholar 

  101. Traycoff CM, Kosak ST, Grigsby S, Srour EF. Evaluation of ex vivo expansion potential of cord blood and bone marrow hematopoietic progenitor cells using cell tracking and limiting dilution analysis. Blood. 1995;85(8):2059-2068.

    CAS  PubMed  Google Scholar 

  102. Tse W, Laughlin MJ. Umbilical cord blood transplantation: a new alternative option. Hematol Am Soc Hematol Educ Prog. 2005;2005:377-383.

    Google Scholar 

  103. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000;97(26):14720-14725.

    Article  CAS  PubMed  Google Scholar 

  104. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91(21):9857-9860.

    Article  CAS  PubMed  Google Scholar 

  105. Vendrame M, Cassady J, Newcomb J, et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke. 2004;35(10):2390-2395.

    Article  PubMed  Google Scholar 

  106. Vendrame M, Gemma C, de Mesquita D, et al. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev. 2005;14(5):595-604.

    Article  CAS  PubMed  Google Scholar 

  107. Vendrame M, Gemma C, Pennypacker KR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191-200.

    Article  CAS  PubMed  Google Scholar 

  108. Wagner JE, Barker JN, DeFor TE, et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 2002;100(5):1611-1618.

    CAS  PubMed  Google Scholar 

  109. Wagner JE, Broxmeyer HE, Byrd RL, et al. Transplantation of umbilical cord blood after myeloablative therapy: analysis of engraftment. Blood. 1992;79(7):1874-1881.

    CAS  PubMed  Google Scholar 

  110. Walczak P, Chen N, Eve D, et al. Long-term cultured human umbilical cord neural-like cells transplanted into the striatum of NOD SCID mice. Brain Res Bull. 2007;74(1–3):155-163.

    Article  CAS  PubMed  Google Scholar 

  111. Walczak P, Chen N, Hudson JE, et al. Do hematopoietic cells exposed to a neurogenic environment mimic properties of endogenous neural precursors? J Neurosci Res. 2004;76(2):244-254.

    Article  CAS  PubMed  Google Scholar 

  112. Wei Y, Huang Y, Zhang Y, et al. Ex vivo expansion of CD34(+) and T and NK cells from umbilical cord blood for leukemic BALB/C nude mouse transplantation. Int J Hematol. 2008;87(2):217-224.

    Article  CAS  PubMed  Google Scholar 

  113. Weiner HL, Selkoe DJ. Inflammation and therapeutic ­vaccination in CNS diseases. Nature. 2002;420(6917): 879-884.

    Article  CAS  PubMed  Google Scholar 

  114. Willing AE, Eve DJ, Sanberg PR. Umbilical cord blood transfusions for prevention of progressive brain injury and induction of neural recovery: an immunological perspective. Regen Med. 2007;2(4):457-464.

    Article  PubMed  Google Scholar 

  115. Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296-307.

    Article  CAS  PubMed  Google Scholar 

  116. Willing AE, Vendrame M, Mallery J, et al. Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke. Cell Transplant. 2003;12(4):449-454.

    PubMed  Google Scholar 

  117. Womble TA, Green S, Sanberg PR, Pennypacker KR, Willing AE. CD14+ Human umbilical cord blood cells are essential for neurological recovery following MCAO. Cell Transplant. 2008;17(4):485-486.

    Google Scholar 

  118. Xiao J, Nan Z, Motooka Y, Low WC. Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev. 2005;14(6):722-733.

    Article  CAS  PubMed  Google Scholar 

  119. Yang SE, Ha CW, Jung M, et al. Mesenchymal stem/progenitor cells developed in cultures from UC blood. Cytotherapy. 2004;6(5):476-486.

    Article  PubMed  Google Scholar 

  120. Yao CL, Feng YH, Lin XZ, Chu IM, Hsieh TB, Hwang SM. Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells Dev. 2006;15(1):70-78.

    Article  CAS  PubMed  Google Scholar 

  121. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002-5012.

    CAS  PubMed  Google Scholar 

  122. Zhang RL, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci. 1994;125(1):3-10.

    Article  CAS  PubMed  Google Scholar 

  123. Zigova T, Song S, Willing AE, et al. Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant. 2002;11(3):265-274.

    PubMed  Google Scholar 

  124. Zola H, Fusco M, Macardle PJ, Flego L, Roberton D. Expression of cytokine receptors by human cord blood lymphocytes: comparison with adult blood lymphocytes. Pediatr Res. 1995;38(3):397-403.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Sanberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Park, DH. et al. (2011). Human Umbilical Cord Blood Cells for Stroke. In: Bhattacharya, N., Stubblefield, P. (eds) Regenerative Medicine Using Pregnancy-Specific Biological Substances. Springer, London. https://doi.org/10.1007/978-1-84882-718-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-718-9_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-717-2

  • Online ISBN: 978-1-84882-718-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics