Skip to main content

Neuroimaging in Clinical Trials

  • Chapter
  • First Online:
Medical Imaging in Clinical Trials

Abstract

Neuroimaging plays a vital role when designing a clinical trial to study tumors, degenerative diseases, stroke, and autoimmune disorders of the central nervous system. Standardization of diagnostic criteria and analysis techniques to report severity of disease serve as objective criteria to judge outcome in these studies. This chapter will review the main imaging tools used when designing a neuroimaging clinical trial and the diagnostic and measurement criteria used to evaluate investigations in neuro-oncology, stroke, multiple sclerosis, and Alzheimer’s disease. This chapter will also provide a brief review of these pathologies to provide a better understanding of the topics most commonly investigated with neuroimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar RA, Khandelwal N, et al. Comparison between contrast-enhanced magnetic resonance imaging and technetium 99m glucohepatonic acid single photon emission computed tomography with histopathologic correlation in gliomas. J Comput Assist Tomogr. 2006;30(5):723–33.

    Article  PubMed  Google Scholar 

  2. Brody AS. New perspectives in CT and MR imaging. Neurol Clin. 1991;9(2):273–86.

    CAS  PubMed  Google Scholar 

  3. Rogalla P, Kloeters C, et al. CT technology overview: 64-slice and beyond. Radiol Clin North Am. 2009;47(1):1–11.

    Article  PubMed  Google Scholar 

  4. Rutten A, Prokop M. Contrast agents in X-ray computed tomography and its applications in oncology. Anticancer Agents Med Chem. 2007;7(3):307–16.

    Article  CAS  PubMed  Google Scholar 

  5. Bettmann MA, Heeren T, et al. Adverse events with radiographic contrast agents: results of the SCVIR Contrast Agent Registry. Radiology. 1997;203(3):611–20.

    CAS  PubMed  Google Scholar 

  6. Runge VM. A review of contrast media research in 1999–2000. Invest Radiol. 2001;36(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  7. Niogi SN, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25(4):241–55.

    Article  PubMed  Google Scholar 

  8. Burtea C, Laurent S et al. Contrast agents: magnetic resonance. Handb Exp Pharmacol. 2008;(185 Pt 1):135–65.

    Google Scholar 

  9. Lee B, Newberg A. Neuroimaging in traumatic brain imaging. NeuroRx. 2005;2(2):372–83.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bakshi R, Kamran S, et al. Fluid-attenuated inversion-recovery MR imaging in acute and subacute cerebral intraventricular hemorrhage. AJNR Am J Neuroradiol. 1999;20(4):629–36.

    CAS  PubMed  Google Scholar 

  11. Reichenbach JR, Venkatesan R, et al. Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging. 1997;7(2):266–79.

    Article  CAS  PubMed  Google Scholar 

  12. Ashwal S, Babikian T, et al. Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. Arch Phys Med Rehabil. 2006;87(12 Suppl 2):S50–8.

    Article  PubMed  Google Scholar 

  13. Holdsworth SJ, Bammer R. Magnetic resonance imaging techniques: fMRI, DWI, and PWI. Semin Neurol. 2008;28(4):395–406.

    Article  PubMed  Google Scholar 

  14. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med. 1989;10(1):135–44.

    Article  CAS  PubMed  Google Scholar 

  15. Bagley LJ, Grossman RI, et al. Magnetization transfer contrast: its utility as a technique and its application to central nervous system pathology. Neurology. 1999;53(5 Suppl 3):S49–51.

    CAS  PubMed  Google Scholar 

  16. Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. 2006;24(20):3282–92.

    Article  CAS  PubMed  Google Scholar 

  17. Rahmim A, Zaidi H. PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun. 2008;29(3):193–207.

    Article  PubMed  Google Scholar 

  18. Gruber S, Stadlbauer A, et al. Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis. Neurosurg Clin N Am. 2005;16(1):101–14, vi.

    Article  PubMed  Google Scholar 

  19. Asari S, Makabe T, et al. Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology. 1994;36(4):308–10.

    Article  CAS  PubMed  Google Scholar 

  20. Wahl RL, Jacene H, et al. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Miller AB, Hoogstraten B, et al. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14.

    Article  CAS  PubMed  Google Scholar 

  22. Eisenhaue EA, Therasse P, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  Google Scholar 

  23. Wen PY, Macdonald DR, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  24. Macdonald DR, Cascino TL, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    CAS  PubMed  Google Scholar 

  25. Gerstner ER, McNamara MB, et al. Effect of adding temozolomide to radiation therapy on the incidence of pseudo-progression. J Neurooncol. 2009;94(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  26. Chao ST, Suh JH, et al. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer. 2001;96(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zuniga RM, Torcuator R, et al. Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol. 2009;91(3):329–36.

    Article  CAS  PubMed  Google Scholar 

  28. Sorensen AG, Batchelor TT, et al. A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res. 2009;69(13):5296–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chandana SR, Movva S, et al. Primary brain tumors in adults. Am Fam Physician. 2008;77(10):1423–30.

    PubMed  Google Scholar 

  30. Jacobs AH, Kracht LW, et al. Imaging in neurooncology. NeuroRx. 2005;2(2):333–47.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kleihues P, Sobin LH. World Health Organization classification of tumors. Cancer. 2000;88(12):2887.

    Article  CAS  PubMed  Google Scholar 

  32. Jellinger K. Glioblastoma multiforme: morphology and biology. Acta Neurochir (Wien). 1978;42(1–2):5–32.

    Article  CAS  Google Scholar 

  33. Arvinda HR, Kesavadas C, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol. 2009;94(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  34. Mechtler L. Neuroimaging in neuro-oncology. Neurol Clin. 2009;27(1):171–201, ix.

    Article  PubMed  Google Scholar 

  35. McMillan KM, Rogers BP, et al. Physiologic characterisation of glioblastoma multiforme using MRI-based hypoxia mapping, chemical shift imaging, perfusion and diffusion maps. J Clin Neurosci. 2006;13(8):811–7.

    Article  CAS  PubMed  Google Scholar 

  36. Sievert AJ, Fisher MJ. Pediatric low-grade gliomas. J Child Neurol. 2009;24(11):1397–408.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bakshi R, Minagar A, et al. Imaging of multiple sclerosis: role in neurotherapeutics. NeuroRx. 2005;2(2):277–303.

    Article  PubMed Central  PubMed  Google Scholar 

  38. D’Souza M, Kappos L, et al. Reconsidering clinical outcomes in Multiple Sclerosis: relapses, impairment, disability and beyond. J Neurol Sci. 2008;274(1–2):76–9.

    Article  PubMed  Google Scholar 

  39. Foley JF, Brandes DW. Redefining functionality and treatment efficacy in multiple sclerosis. Neurology. 2009;72(23 Suppl 5):S1–11.

    Article  PubMed  Google Scholar 

  40. Comi G, Filippi M, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet. 2001;357(9268):1576–82.

    Article  CAS  PubMed  Google Scholar 

  41. Barkhof F, Calabresi PA, et al. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5(5):256–66.

    Article  PubMed  Google Scholar 

  42. Bar-Zohar D, Agosta F, et al. Magnetic resonance imaging metrics and their correlation with clinical outcomes in multiple sclerosis: a review of the literature and future perspectives. Mult Scler. 2008;14(6):719–27.

    Article  CAS  PubMed  Google Scholar 

  43. Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol. 1997;42:783–93.

    Article  CAS  PubMed  Google Scholar 

  44. Poser CM, Brinar VV. Diagnostic criteria for multiple sclerosis. Clin Neurol Neurosurg. 2001;103(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  45. Polman CH, Wolinsky JS, et al. Multiple sclerosis diagnostic criteria: three years later. Mult Scler. 2005;11(1):5–12.

    Article  PubMed  Google Scholar 

  46. Butcher K, Emery D. Acute stroke imaging. Part I: fundamentals. Can J Neurol Sci. 2010;37(1):4–16.

    CAS  PubMed  Google Scholar 

  47. Demchuk AM, Coutts SB. Alberta Stroke Program Early CT Score in acute stroke triage. Neuroimaging Clin N Am. 2005;15(2):409–19, xii.

    Article  PubMed  Google Scholar 

  48. Hampel H, Frank R, et al. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 2010;9(7):560–74.

    Article  CAS  PubMed  Google Scholar 

  49. Jack Jr CR, Bernstein MA, et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement. 2010;6(3):212–20.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Jagust WJ, Bandy D, et al. The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement. 2010;6(3):221–9.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Shellock FG, Spinazzi A. MRI safety update 2008: part 2, screening patients for MRI. AJR Am J Roentgenol. 2008;191(4):1140–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos J. Tsiouris MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Niogi, S.N., Tsiouris, A.J. (2014). Neuroimaging in Clinical Trials. In: Miller, C., Krasnow, J., Schwartz, L. (eds) Medical Imaging in Clinical Trials. Springer, London. https://doi.org/10.1007/978-1-84882-710-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-710-3_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-709-7

  • Online ISBN: 978-1-84882-710-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics