Skip to main content

Biomechanics of Sacral Fixation

  • Chapter
  • First Online:
Book cover Biomechanics and Biomaterials in Orthopedics

Abstract

The wedge-shaped Sacrum not only gives support to the vertebral column, it also provides strength and stability to the pelvis. Recent renewed interest in sacral screw fixations together with advancements in mechanical understanding has resulted in increased attention being paid to the surgical anatomy of the sacrum. Awareness of the anatomical structure, and the adjacent neurovascular and visceral structures and their configurations will minimize complications and contribute to a successful surgical outcome.

In the adult, the sacrum is composed of five vertebral bodies fused together by four ossified intervertebral disks. The sacrum articulates above with the fifth lumbar (L5) vertebra, below with the coccyx, and laterally from the auricular surfaces with the two iliac bones of the hip to form the sacroiliac joints. The projecting anterior edge of the first sacral vertebra is called the sacral promontory and the two sides are the sacrum alas. The sacral promontory is used as a landmark for making pelvic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arman C, Naderi S, Kiray A, Aksu FT, Yilmaz HS, Tetik S, Korman E. The human sacrum and safe approaches for screw placement. J Clin Neurosci. 2009;16:1046–9.

    Article  PubMed  Google Scholar 

  2. Banta CJ, King AG, Dabezies EJ, Liljeberg RL. Measurement of the effective pedicle diameter in the human spine. Orthopaedics. 1989;12:939–42.

    Google Scholar 

  3. Dohring J, Krag MH, Johnson CC. Sacral screw fixation: a morphologic anatomic and mechanical study (abstract). Proc North Am Spine Soc. 1990.

    Google Scholar 

  4. Ergur I, Akcali O, Kiray A, Kosay C, Tayefi H. Neurovascular risks of sacral screws with bicortical purchase: an anatomical study. Eur Spine J. 2007;16:1519–23.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Farcy JPC, Rawlins BA, Glassman SD. Technique and results of fixation to the sacrum with iliosacral screws. Spine. 1992;17(Suppl):190–5.

    Article  Google Scholar 

  6. Xu R, Ebraheim NA, Mohamed A, El-Gamal H, Yeasting RA. Anatomic considerations for dorsal sacral plate-screw fixation. J Spinal Disord. 1995;8(5):352–6.

    Article  CAS  PubMed  Google Scholar 

  7. Mirkovic S, Abitbol JJ, Steinman J, Edwards CC, Schaffler M, Massie J, Garfin SR. Anatomic consideration for sacral screw placement. Spine. 1991;16(Suppl):289–94.

    Google Scholar 

  8. Jackson RP. Insertion of intrasacral rods for sacral fixation and spinal correction with in situ rod contouring technique. In: Bridwell KH, Dewald RL, editors. The textbook of spinal surgery. 2nd ed. Philadelphia: Lippincott-Raven; 1997. p. 2187–209.

    Google Scholar 

  9. Morse BJ, Ebraheim NA, Jackson WT. Preoperative CT determination of angles for sacral screw placement. Spine. 1994;19:604–7.

    Article  CAS  PubMed  Google Scholar 

  10. Xu R, Ebraheim NA, Yeasting RA, Wong FY, Jackson WT. Morphometric evaluation of the first sacral vertebra and the projection of its pedicle on the posterior aspect of the sacrum. Spine. 1995;20(8):936–40.

    Article  CAS  PubMed  Google Scholar 

  11. Esses SI, Botsford DJ, Huler RJ, Rauschning W. Surgical anatomy of the sacrum. A guide for rational screw fixation. Spine. 1991;16(6 Suppl):S283–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ashman RB, Bechtold JE, Edwards WT, Johnston CE, McAfee PC, Tencer AF. In vitro spinal arthrodesis implant mechanical testing protocols. J Spinal Disord. 1989;12:274–81.

    Google Scholar 

  13. Leong JCY, Lu WW, Zheng YG, Zhu QA, Zhong SZ. Comparison of the strengths of lumbosacral fixation achieved with techniques using one and two triangulated sacral screws. Spine. 1998;23(21):2289–94.

    Article  CAS  PubMed  Google Scholar 

  14. Qingan Z, Lu WW, Holmes AD, Zheng YG, Zhong S, Leong CY. The effects of cyclic loading on pull-out strength of sacral screw fixation: an in vitro biomechanical study. Spine. 2000;25:1065–9.

    Article  Google Scholar 

  15. Granhed H, Johnson R, Hansson T. Mineral content and strength of lumbar vertebrae: a cadaver study. Acta Orthop Scand. 1989;52:105–9.

    Article  Google Scholar 

  16. Hadjipavlou AG, Nicodemus CL, Al-Hamdan FA, Simmons JW, Pope MH. Correlation of bone equivalent mineral density to pull-out strength of triangulated pedicle screw construct. J Spinal Disord. 1997;10(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  17. Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine: an in vitro study of the mechanical stability. Spine. 1993;18:2240–5.

    Article  CAS  PubMed  Google Scholar 

  18. Smit TH, Odgaard A, Schneider E. Structure and function of vertebral trabecular bone. Spine. 1997;22:2823–33.

    Article  CAS  PubMed  Google Scholar 

  19. Snyder BD, Zaltz I, Hall JE, Emans JB. Predicting the integrity of vertebral bone screw fixation in anterior spinal instrumentation. Spine. 1995;20:1568–74.

    Article  CAS  PubMed  Google Scholar 

  20. Wittenberg RH, Lee KS, Shea M, 3 White AA, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop. 1993;296:278–87.

    PubMed  Google Scholar 

  21. Smith SA, Abitbol JJ, Carlson GD, Anderson DR, Taggart KW, Garfin SR. The effects of depth of penetration, screw orientation, and bone density on sacral screw fixation. Spine. 1993;18(8):1006–10.

    Article  CAS  PubMed  Google Scholar 

  22. Vesterby A, Mosekilde L, Gundersen H, Melsen F, Mosekilde L, Holm K, Sorensen S. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone. 1991;12:219–24.

    Article  CAS  PubMed  Google Scholar 

  23. Weaver JK, Chalmers J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg. 1966;48A:289–9.

    Google Scholar 

  24. Ericksson S, Isberg BO, Lindgren JU. Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int. 1989;44:243–50.

    Article  Google Scholar 

  25. Imai Y, Sone T, Tomomitsu T, Imai H, Mikawa Y, Watanabe R, Fukunaga M. Precision and accuracy for pheripheral quantitative computed tomography evaluated using radial specimens. J Bone Miner Res. 1997;12:263.

    Article  Google Scholar 

  26. Rüeggsegger P. The use of peripheral QCT in the evaluation of bone remodelling. The Endocrinologist. 1994;4(3):167–76.

    Article  Google Scholar 

  27. Zheng YG, Lu WW, Zhu Q, Qin L, Shizhen Z, Leong JCY. Bone mineral density variations of the sacrum in young adults and its significance for sacral fixation. Spine. 1999;25:353–7.

    Article  Google Scholar 

  28. Lu WW, Zheng YG, Holmes AD, Zhu QA, Luk KDK, Leong JCY. Bone mineral density variations along the lumbosacral spine. Clin Orthop. 2000;378:255–63.

    Article  PubMed  Google Scholar 

  29. Luk KD, Chen L, Lu WW. A stronger bicortical sacral pedicle screw fixation through the s1 endplate: an in vitro cyclic loading and pull-out force evaluation. Spine (Phila Pa 1976). 2005;30:525–9.

    Article  Google Scholar 

  30. Ruland CM, McAfee PC, Warden KE, Cunningham BW. Triangulation of pedicular instrumentation: a biomechanical analysis. Spine. 1991;16(Suppl):270–6.

    Article  Google Scholar 

  31. Edwards CC. Spinal screw fixation of the lumbar and sacral spine. Early results treating the first 50 cases. Orthop Trans. 1987;11:99.

    Google Scholar 

  32. Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plates. Clin Orthop. 1986;203:18–33.

    PubMed  Google Scholar 

  33. Allen Jr BL, Ferguson RL. The Galveston experience with L-rod instrumentation for adolescent idiopathic scoliosis. Clin Orthop. 1988;229:59–69.

    PubMed  Google Scholar 

  34. Glazer PA, Colliou O, Lotz JC, Bradford DS. Biomechanical analysis of lumbosacral fixation. Spine. 1996;21:1211–22.

    Article  CAS  PubMed  Google Scholar 

  35. Wittenberg RH, Shea M, Swartz DE, Lee KS, White 3rd AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine. 1991;16(6):647–52.

    Article  CAS  PubMed  Google Scholar 

  36. Halvorson TL, Kelley LA, Thomas KA, Whitecloud 3rd TS, Cook SD. Effects of bone mineral density on pedicle screw fixation. Spine. 1994;19:2415–20.

    Article  CAS  PubMed  Google Scholar 

  37. Krag MH, Beynnon BD, Pope MH, DeCoster TA. The depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord. 1989;1:287–94.

    Google Scholar 

  38. Wittenberg RH, Shea M, Edwards WT, Swartz DE, White AA, Hayes WC. A biomechanical study of the fatigue characteristics of thoracolumbar fixation implants in a calf spine model. Spine. 1992;17(6S):S121–8.

    Article  CAS  PubMed  Google Scholar 

  39. Yoganandan N, Larson SJ, Cusick JF, Pintar F, Maiman DJ. Structural strength and kinematics of pedicle scrw/plate fixation of the lumbar spine. Presented at the annual meeting of the International Society for the Study of the Lumbar Spine. Boston; 1990.

    Google Scholar 

  40. Ashman RB, Birch JG, Bone LB. Mechanical testing of spinal instrumentation. Clin Orthop. 1988;227:113–25.

    CAS  PubMed  Google Scholar 

  41. Bayley JC, Yuan HA, Fredrickson BR. The Syracuse I-plate. Spine. 1991;16:120–4.

    Article  Google Scholar 

  42. Early S, Mahar A, Oka R, Newton P. Biomechanical comparison of lumbosacral fixation using Luque-Galveston and Colorado II sacropelvic fixation: advantage of using locked proximal fixation. Spine (Phila Pa 1976). 2005;30:1396–401.

    Article  Google Scholar 

  43. Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL. An internal fixation for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine: design and testing. Clin Orthop. 1986;203:75–98.

    PubMed  Google Scholar 

  44. Ngu BB, Belkoff SM, Gelb DE, Ludwig SC. A biomechanical comparison of sacral pedicle screw salvage techniques. Spine (Phila Pa 1976). 2006;31:E166–8.

    Article  Google Scholar 

  45. Ogilvie JW, Schengel M. Comparison of lumbosacral fixation devices. Clin Orthop. 1986;203:120–5.

    PubMed  Google Scholar 

  46. Tomlinson T, Chen J, Upasani V, Mahar A. Unilateral and bilateral sacropelvic fixation result in similar construct biomechanics. Spine (Phila Pa 1976). 2008;33(20):2127–33.

    Article  Google Scholar 

  47. Chopin D. A new device for pelvic fixation for spinal surgery: the sacral block. Presented at 8th international congress on cotrel-dubousset instrumentation. Minneapolis; 1991.

    Google Scholar 

  48. Jackson RP, Hamilton AC. C-D screws with oblique canals for improved sacral fixation: a prospective clinical study of the first fifty patients. 7th proceeding of the international congress on cotrel-dubousset instrumentation. 1990, p. 75–86.

    Google Scholar 

  49. SOFAMOR. In vitro biomechanical evaluation report of the compact CD fixture in lumbo-sacral. Study done by the Biomechanical Laboratory of Paris-Pr Lavaste Department. 1990 (Unpublished data).

    Google Scholar 

  50. Devlin VJ, Oheneba BA, Bradford DS, Ogilvie JW, Transfeldt EE. Treatment of adult spinal deformity with fusion to the sacrum using CD instrumentation. J Spinal Disord. 1991;4(1):1–14.

    CAS  PubMed  Google Scholar 

  51. Ogon M, Haid C, Krismer M, Sterzinger W, Bauer R. Comparison between single-screw and triangulated, double-screw fixation in anterior spine surgery. Spine. 1996;21:2728–34.

    Article  CAS  PubMed  Google Scholar 

  52. Zindrick MR, Wiltse LL, Widell EH, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop. 1986;203:99–112.

    PubMed  Google Scholar 

  53. Carlson GD, Abitbol JJ, Anderson DR, et al. Screw fixation in the human sacrum: an in vitro study of the biomechanics of fixation. Spine. 1992;17(6S):S197–203.

    Google Scholar 

  54. Zdeblick TA, Kunz DN, Cooke ME. Pedicle screw pull-out strength: correlation with insertional torque. Spine. 1993;18(12):1673–6.

    Article  CAS  PubMed  Google Scholar 

  55. Cunningham BW, Sefter JC, Shono Y, McAfee PC. Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine. 1993;18(12):1677–88.

    Article  CAS  PubMed  Google Scholar 

  56. Lu WW, Luk KDK, Ruan DK, Fei ZQ, Leong JCY. Stability of the whole lumbar spine after multilevel fenestration and discectomy. Spine. 1999;24:1277–82.

    Article  CAS  PubMed  Google Scholar 

  57. Pfeiffer M, Hoffman H, Goel VK, Weinstein JN, Griss P. In vitro testing of a new transpedicular stabilization technique. Eur Spine J. 1997;6(4):249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamagata M, Kitahara I, Minami S, et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine. 1992;17(3 Suppl):S51–4.

    Article  CAS  PubMed  Google Scholar 

  59. Perra JH. Techniques of instrumentation in long fusion to the sacrum. Clin Orthop North Am. 1994;25:287–99.

    CAS  Google Scholar 

  60. Shea M, Edwards WT, Clothiaux PL, Crowell RR, Nachemson AL, White AA, Hayes WC. Three-dimensional load displacement properties of posterior lumbar fixation. J Orthop Trauma. 1991;5:420–7.

    Article  CAS  PubMed  Google Scholar 

  61. McCalden RW, Mcgeough JA, Court-Brown CM. Age-related changes in the compressive strength of cancellous bone. J Bone Joint Surg. 1997;79A:421–7.

    Google Scholar 

  62. McCord DH, Cunningham BW, Shono Y, Myers JJ, McAfee PC. Biomechanical analysis of lumbosacral fixation. Spine. 1992;17:235–43.

    Article  Google Scholar 

  63. Lu WW, Zhu QA, Holmes AD, Luk KDK, Zhong S, Leong JCY. Loosening of sacral screw fixation under in vitro fatigue loading. J Orthop Res. 2000;18:808–14.

    Article  CAS  PubMed  Google Scholar 

  64. Kornblatt MD, Casey MP, Jacobs RR. Internal fixation in lumbosacral spine fusion: a biomechanical and clinical study. Clin Orthop. 1986;203:141–50.

    PubMed  Google Scholar 

  65. Lee CK, Langrana NA. Lumbosacral spinal fusion: a biomechanical study. Spine. 1984;9:574–81.

    Article  CAS  PubMed  Google Scholar 

  66. Myers BS, Belmont PJ, Richardson WJ, Yu JR, Harper KD, Nightingale RW. The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength. Spine. 1966;21(17):1962–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Lu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Leong, J.C.Y., Ni, G.X., Yu, B., Lu, W.W. (2016). Biomechanics of Sacral Fixation. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_36

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics