Skip to main content

Biomechanics of Osteosynthesis by Screwed Plates

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Within the last two decades new thinking of operative fracture treatment using plates has been established. Using plates for internal fixation the advantages of operative and conservative treatment have to be combined: proper alignment of the injured bone segment and sufficient stability of fixation allowing functional aftercare and an undisturbed natural course of bone healing. Thus, in shaft fractures, the exact reduction of each bone fragment is no longer a goal in itself. Rather, the overall restoration of length, axial alignment, and rotation are the goals. Plate osteosynthesis keeps its important and well-established place in the treatment of certain fractures. Classical indications for an osteosynthesis using plates or internal fixators are articular fractures, metaphyseal fractures, and some diaphyseal fractures, such as forearm fractures, diaphyseal fractures with associated articular fractures, diaphyseal fractures in polyfractured or polytraumatized patients, narrow medullary canal not suitable for intramedullary rodding, and some diaphyseal fractures in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansmann M. Eine neue Methode der Fixation der Fragmente bei complicirten Fracturen. Verhandlungen der Deutschen Gesellschaft für Chirurgie. 1886;15:134–7.

    Google Scholar 

  2. Lambotte A. L'intervention opératoire dans les fractures récentes et anciennes. Paris: Maloine; 1907.

    Google Scholar 

  3. Lane WA. The operative treatment of fractures. London: Medical Publishing; 1913.

    Google Scholar 

  4. Sherman OWN. Vanadium steel bone plates and screws. Surg Gynecol Obstet. 1912;14:629–34.

    Google Scholar 

  5. Bagby GW. Compression bone-plating. Historical considerations. J Bone Joint Surg. 1977;59-A:625–31.

    Google Scholar 

  6. Danis R. Théorie et pratique de l'ostéosynthèse. Paris: Masson; 1949.

    Google Scholar 

  7. Müller ME, Allgöwer M, Willenegger H. Technik der operativen Frakturenbehandlung. Berlin/Heidelberg/New York: Springer; 1963.

    Book  Google Scholar 

  8. Allgöwer M, Ehrsam R, Ganz R, Matter P, Perren SM. Klinische Erfahrungen mit der neuen Kompressionsplatte "DCP". Acta Orthop Scand Suppl. 1969;125:1–20.

    Google Scholar 

  9. Baumgaertel F, Buhl M, Rahn BA. Fracture healing in biological plate osteosynthesis. Injury. 1998;29(Suppl):3–6.

    Article  Google Scholar 

  10. Chrisovitsinos JP, Xenakis T, Papakostides KG, Skaltsoyannis N, Grestas A, Soucacos PN. Bridge plating osteosynthesis of 20 comminuted fractures of the femur. Acta Orthop Scand Suppl. 1997;275:72–6.

    CAS  PubMed  Google Scholar 

  11. Farouk O, Krettek C, Miclau T, Schandelmaier P, Tscherne H. Effects of percutaneous and conventional plating techniques on the blood supply to the femur. Arch Orthop Trauma Surg. 1998;117:438–41.

    Article  CAS  PubMed  Google Scholar 

  12. Gautier E, Perren SM. Die "Limited Contact Dynamic Compression Plate" (LC-DCP–Biomechanische Forschung als Grundlage des neuen Plattendesigns. Orthopade. 1992;21:11–23.

    CAS  PubMed  Google Scholar 

  13. Gautier E, Perren SM, Ganz R. Principles of internal fixation. Curr Orthop. 1992;6:220–32.

    Article  Google Scholar 

  14. Gautier E, Ganz R. Die biologische Plattenosteosynthese. Zentralbl Chir. 1994;119:564–72.

    CAS  PubMed  Google Scholar 

  15. Gautier E, Marti CB, Schuster AJ, Wachtl SW, Jakob RP. Die eingeschobene Femur- und Tibiaplatte. OP-J. 2000;16:260–7.

    Article  Google Scholar 

  16. Gerber C, Mast JW, Ganz R. Biological internal fixation of fractures. Arch Orthop Trauma Surg. 1990;109:295–303.

    Article  CAS  PubMed  Google Scholar 

  17. Heitemeyer U, Hierholzer G, Terhorst J. Der Stellenwert der überbrückenden Plattenosteosynthese bei Mehrfragmentbruchschädigung des Femur im klinischen Vergleich. Unfallchirurg. 1986;89:533–8.

    CAS  PubMed  Google Scholar 

  18. Helfet DL, Shonnard PY, Levine D, Borelli J. Minimally invasive plate osteosynthesis of distal fractures of the tibia. Injury. 1997;28 Suppl 1:42–8.

    Article  Google Scholar 

  19. Karnezis IA. Biomechanical considerations in 'biological' femoral osteosynthesis: an experimental study of the 'bridging' and 'wave' plating techniques. Arch Orthop Trauma Surg. 2000;120:272–5.

    Article  CAS  PubMed  Google Scholar 

  20. Kinast C, Bolhofner BR, Mast JW, Ganz R. Subtrochanteric fractures of the femur. results of treatment with the 95 degree condylar plate. Clin Orthop. 1989;238:122–30.

    PubMed  Google Scholar 

  21. Krettek C, Schandelmaier P, Miclau T, Tscherne H. Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures. Injury. 1997;28 Suppl 1:20–30.

    Article  Google Scholar 

  22. Krettek C, Schandelmaier P, Miclau T, Bertram R, Holmes W, Tscherne H. Transarticular joint reconstruction and indirect plate osteosynthesis for complex distal supracondylar femoral fractures. Injury. 1997;28 Suppl 1:S31–41.

    Article  Google Scholar 

  23. Mast J, Jakob R, Ganz R. Planning and reduction technique in fracture surgery. Berlin/Heidelberg/New York: Springer; 1989.

    Book  Google Scholar 

  24. Miclau T, Martin RE. The evolution of modern plate osteosynthesis. Injury. 1997;28 Suppl 1:3–6.

    Article  Google Scholar 

  25. Perren SM. The concept of biological plating using the limited contact dynamic compression plate (LC-DCP). Injury. 1991;22 Suppl 1:1–41.

    PubMed  Google Scholar 

  26. Rozbruch RS, Müller U, Gautier E, Ganz R. The evolution of femoral shaft plating technique. Clin Orthop. 1998;354:195–208.

    Article  PubMed  Google Scholar 

  27. Rüedi TP, Murphy WM. AO principles of fracture management. Stuttgart/New York: Thieme; 2000.

    Google Scholar 

  28. Schmidtmann U, Knopp W, Wolff C, Stürmer KM. Results of elastic plate osteosynthesis of simple femoral shaft fractures in polytraumatized patients. An Altern Proced Unfallchir. 1997;100:949–56.

    Article  CAS  Google Scholar 

  29. Siebenrock KA, Müller U, Ganz R. Indirect reduction with a condylar blade plate for osteosynthesis of subtrochanteric femoral fractures. Injury. 1998;29 Suppl 3:7–15.

    Article  Google Scholar 

  30. van Riet YE, van der Werken C, Marti RK. Subfascial plate fixation of comminuted diaphyseal femoral fractures: a report of three cases utilizing biological osteosynthesis. J Orthop Trauma. 1997;11:57–60.

    Article  PubMed  Google Scholar 

  31. Wenda K, Runkel M, Degreif J, Rudig L. Minimally invasive plate fixation in femoral shaft fractures. Injury. 1997;28 Suppl 1:13–9.

    Article  Google Scholar 

  32. Weller S, Höntzsch D, Frigg R. Die epiperostale, perkutane Plattenosteosynthese. Eine minimal-invasive Technik unter dem Aspekt der “biologischen Osteosynthese”. Unfallchirurg. 1998;101:115–21.

    Article  CAS  PubMed  Google Scholar 

  33. Brookes M. The blood supply of bone. an approach to bone biology. London: Butterworth; 1971.

    Google Scholar 

  34. Ficat P, Arlet J. Ischémie et nécrose osseuses. L’exploration fonctionelle de la circulation intra-osseuse et ses applications. Paris/New York/Barcelone/Milan: Masson; 1977.

    Google Scholar 

  35. Göthman L. Vascular reactions in experimental fractures. Acta Orthop Scand Suppl. 1961;284:1–34.

    Google Scholar 

  36. Macnab I, de Haas WG. The role of periosteal blood supply in the healing of fractures of the tibia. Clin Orthop. 1974;105:27–33.

    Article  PubMed  Google Scholar 

  37. Rhinelander FW. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Joint Surg. 1968;50-A:784–800.

    Google Scholar 

  38. Trueta J. Blood supply and the rate of healing of tibial fractures. Clin Orthop. 1974;105:11–26.

    Article  PubMed  Google Scholar 

  39. Kelly PJ. Anatomy, physiology and pathology of the blood supply of bones. J Bone Joint Surg. 1968;50-A:766–83.

    Google Scholar 

  40. Nelson GE, Kelly PE, Peterson LFA, Janes JM. Blood supply of the human tibia. J Bone Joint Surg. 1960;42-A:625–36.

    PubMed  Google Scholar 

  41. Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop. 1974;105:34–81.

    Article  PubMed  Google Scholar 

  42. Rhinelander FW, Wilson JW. Blood supply to developing, mature, and healing bone. In: Sumner-Smith G, editor. Bone in clinical orthopaedics. A study in comparative osteology. Philadelphia/London/Toronto: Saunders; 1982. p. 81–158.

    Google Scholar 

  43. Moor R, Tepic S, Perren SM. Hochgeschwindigkeits-Film-Analyse des Knochenbruchs. Z Unfallchir Versicherungsmed. 1989;82:128–32.

    CAS  Google Scholar 

  44. Alexander AH, Cabaud HE, Johnston JO, Lichtman DM. Compression plate position. Extraperiosteal or subperiosteal? Clin Orthop. 1983;175:280–5.

    PubMed  Google Scholar 

  45. Fernandez Dell’Orca A, Regazzoni P. Internal fixation: a new technology. In: Rüedi T, Murphy WM, editors. AO principles of fracture management. Berlin/Heidelberg/New York: Thieme; 2000. p. 249–53.

    Google Scholar 

  46. Gautier E, Pesantez RF. Surgical reduction. In: Rüedi T, Buckley RE, Moran CG, editors. AO principles of fracture management. Stuttgart/New York: Thieme; 2007. p. 165–86.

    Google Scholar 

  47. Gautier E, Cordey J, Mathys R, Rahn BA, Perren SM. Porosity and remodelling of plated bone after internal fixation: result of stress shielding or vascular damage? In: Ducheyne P, van der Perre G, AE Aubert AE, editors. Biomaterials and biomechanics. Amsterdam: Elsevier Science Publishers BV; 1984. p. 195–200.

    Google Scholar 

  48. Gautier E, Perren SM. Die Reaktion der Kortikalis nach Verplattung - eine Folge der Belastungsveränderung des Knochens oder ein Vaskularitätsproblem? In: Wolter D, Zimmer W, editors. Die Plattenosteosynthese und ihre Konkurrenzverfahren. Berlin/Heidelberg/New York: Springer; 1991. p. 21–37.

    Chapter  Google Scholar 

  49. Gautier E, Rahn BA, Perren SM. Vascular remodelling. Injury. 1995;26 Suppl 2:11–9.

    Article  Google Scholar 

  50. Gunst MA, Suter C, Rahn BA. Die Knochendurchblutung nach Plattenosteosynthese. Helv Chir Acta. 1979;46:171–5.

    CAS  PubMed  Google Scholar 

  51. Jacobs RR, Rahn BA, Perren SM. Effect of plates on cortical bone perfusion. J Trauma. 1981;21:91–5.

    Article  CAS  PubMed  Google Scholar 

  52. Jörger KA (1987) Akute intrakortikale Durchblutungsstörung unter Osteosyntheseplatten mit unterschiedlichen Auflageflächen. MD thesis, University of Bern.

    Google Scholar 

  53. Lippuner K, Vogel R, Tepic S, Rahn BA, Cordey J, Perren SM. Effect of animal species and age on plate-induced vascular damage in cortical bone. Arch Orthop Trauma Surg. 1992;111:78–84.

    Article  CAS  PubMed  Google Scholar 

  54. Lüthi UK (1980) Auflageflächen von Osteosyntheseplatten und intrakortikale Durchblutungsstörungen. MD thesis, University of Basel.

    Google Scholar 

  55. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E. Early temporary porosis of bone induced by internal fixation implants. a reaction to necrosis, not to stress protection? Clin Orthop. 1988;232:139–51.

    PubMed  Google Scholar 

  56. Arens S, Kraft C, Schlegel U, Printzen G, Perren SM, Hansis M. Susceptibility to local infection in biological internal fixation. experimental study of open vs minimally invasive plate osteosynthesis in rabbits. Arch Orthop Trauma Surg. 1999;119:82–5.

    Article  CAS  PubMed  Google Scholar 

  57. Akeson WH, Woo SL-Y, Rutherford L, Coutts RD, Gonsalves M, Amiel D. The effects of rigidity of internal fixation plates on long bone remodeling. Acta Orthop Scand. 1976;47:241–9.

    Article  CAS  PubMed  Google Scholar 

  58. Claes L. The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity. J Orthop Res. 1989;7:170–7.

    Article  CAS  PubMed  Google Scholar 

  59. Cochran GVB. Effects of internal fixation plates on mechanical deformation of bone. Surg Forum Orthop Surg. 1969;20:469–71.

    CAS  Google Scholar 

  60. Cordey J, Schwyzer HK, Brun S, Matter P, Perren SM. Bone loss following plate fixation of fractures? Helv Chir Acta. 1985;52:181–4.

    CAS  PubMed  Google Scholar 

  61. Gördes W, Kossyk W, Holländer H. Histologische und histomorphometrische Veränderungen bei Plattenosteosynthesen nach Osteotomien an der Tibia des Kaninchens. Arch Orthop Unfallchir. 1975;82:123–33.

    PubMed  Google Scholar 

  62. Matter P, Brennwald J, Perren SM. Biologische Reaktion des Knochens auf Osteosyntheseplatten. Helv Chir Acta. 1974;12(Suppl):1–44.

    Google Scholar 

  63. Moyen BJ-L, Lahey PJ, Weinberg EH, Rumelhart C, Harris WH. Effects of application of metal plates to bone. Acta Orthop Belg. 1980;46:806–15.

    CAS  PubMed  Google Scholar 

  64. Strömberg L, Dalen N. Atrophy of cortical bone caused by rigid internal fixation plates. Acta Orthop Scand. 1978;49:448–56.

    Article  PubMed  Google Scholar 

  65. Terjesen T, Benum P. The stress-protection effect of metal plates on the intact rabbit tibia. Acta Orthop Scand. 1983;54:810–8.

    Article  CAS  PubMed  Google Scholar 

  66. Uhthoff HK, Dubuc FL. Bone structure changes in the dog under rigid internal fixation. Clin Orthop. 1971;81:165–70.

    Article  CAS  PubMed  Google Scholar 

  67. Uhthoff HK, Bardos DI, Liskova-Kiar M. The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures. J Bone Joint Surg. 1981;63-B:427–34.

    CAS  Google Scholar 

  68. Uhthoff HK, Finnegan M. The effects of metal plates on post-traumatic remodelling and bone mass. J Bone Joint Surg. 1983;65-B:66–71.

    Google Scholar 

  69. Wolff J. Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der äusseren Knochenform. Berlin: Berliner Akademie der Wissenschaften Reichsdruckerei; 1884.

    Google Scholar 

  70. Chidgey L, Chakkalakal D, Blotcky A, Connolly JF. Vascular reorganization and return of rigidity in fracture healing. J Orthop Res. 1986;4:173–9.

    Article  CAS  PubMed  Google Scholar 

  71. Claes L, Heitemeyer U, Krischak G, Braun H, Hierholzer G. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop. 1999;365:221–9.

    Article  PubMed  Google Scholar 

  72. Tepic S, Remiger AR, Morikawa K, Predieri M, Perren SM. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma. 1997;11:14–23.

    Article  CAS  PubMed  Google Scholar 

  73. Schenk RK, Willenegger H. Zum histologischen Bild der sogenannten Primärheilung der Knochenkompakta nach experimentellen Osteotomien am Hund. Experientia. 1963;19:593.

    Article  CAS  PubMed  Google Scholar 

  74. Terjesen T, Apalset K. The influence of different degrees of stiffness of fixation plates on experimental bone healing. J Orthop Res. 1988;6:293–9.

    Article  CAS  PubMed  Google Scholar 

  75. Perren SM, Boitzy A. Cellular differentiation and bone biomechanics during the consolidation of a fracture. Anat Clin. 1978;1:13–28.

    Article  Google Scholar 

  76. Müller ME, Allgöwer M, Schneider R, Willenegger H. Manual of internal fixation. Berlin/Heidelberg/New York: Springer; 1990.

    Google Scholar 

  77. Ito K, Perren SM. Biology and biomechanics in fracture management. In: Rüedi T, Buckley RE, Moran CG, editors. AO principles of fracture management. Stuttgart/New York: Thieme; 2007. p. 9–31.

    Google Scholar 

  78. Perren SM, Klaue K, Pohler O, Predieri M, Steinemann S, Gautier E. The limited contact dynamic compression plate (LC-DCP). Arch Orthop Trauma Surg. 1990;109:304–10.

    Article  CAS  PubMed  Google Scholar 

  79. Vattolo M (1987) Der Einfluss von Rillen in Osteosyntheseplatten auf den Umbau der Kortikalis. MD thesis, University of Bern.

    Google Scholar 

  80. Tepic S, Perren SM. The biomechanics of the PC-Fix internal fixator. Injury. 1995;26(Suppl):5–10.

    Article  Google Scholar 

  81. Babst R, Hehli M, Regazzoni P. LISS-Traktor, Kombination des “less invasive stabilization systems” (LISS) mit dem AO-Distraktor für distale Femur- und proximale Tibiafrakturen. Unfallchirurg. 2001;104:503–5.

    Article  Google Scholar 

  82. Krettek C, Gerich T, Miclau T. A minimally invasive medial approach for proximale tibial fractures. Injury. 2001;32(Suppl):4–13.

    Article  Google Scholar 

  83. Frigg R, Frenk A, Haas NP, Regazzoni P. LCP: the locking compression plate system. AO Dialogue. 2001;14:8–9.

    Google Scholar 

  84. Sommer C, Gautier E, Müller M, Helfet DL, Wagner M. First clinical results of the locking compression plate (LCP). Injury. 2003;34 Suppl 2:43–54.

    Article  Google Scholar 

  85. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003;34 Suppl 2:63–76.

    Article  Google Scholar 

  86. Wagner M, Frigg R, Buckley R, Gautier E, Schütz M, Sommer C (2006) Internal fixators. Concepts and cases using LCP and LISS. In: AO manual of fracture management. Stuttgart/New York: Thieme.

    Google Scholar 

  87. Otto RJ, Moed BR, Bledsoe JG. Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J Orthop Trauma. 2009;23:645–52.

    Article  PubMed  Google Scholar 

  88. Rausch S, Schlonski O, Klos K, Gras F, Gueorguiev B, Hofmann GO, Mückley T. Volar versus dorsal latest-generation variable-angle locking plates for the fixation of AO type 23C 2.1 distal radius fractures: a biomechanical study in cadavers. Injury. 2013;44:523–6.

    Article  PubMed  Google Scholar 

  89. Wilkens KJ, Curtiss S, Lee MA. Polyaxial locking plate fixation in distal femur fractures: a biomechanical comparison. J Orthop Trauma. 2008;22:624–8.

    Article  PubMed  Google Scholar 

  90. Jazrawi LM, Bai B, Simon JA, Kummer FJ, Birdzell LT, Koval KJ. A biomechanical comparison of Schuhli nuts or cement augmented screws for plating of humeral fractures. Clin Orthop. 2000;377:235–40.

    Article  PubMed  Google Scholar 

  91. Kolodziej P, Lee FS, Patel A, Kassab SS, Shen KL, Yang KH, Mast JW. Biomechanical evaluation of the schuhli nut. Clin Orthop. 1998;347:79–85.

    Article  PubMed  Google Scholar 

  92. Simon JA, Dennis MG, Kummer FJ, Koval KJ. Schuhli augmentation of plate and screw fixation for humeral shaft fractures: a laboratory study. J Orthop Trauma. 1999;13:196–9.

    Article  CAS  PubMed  Google Scholar 

  93. Müller H. Festigkeits- und Elastizitätslehre. München: Carl Hanser; 1970.

    Google Scholar 

  94. Richards GR, Perren SM. Implants and materials in fracture fixation. In: Rüedi T, Buckley RE, Moran CG, editors. AO Principles of fracture management. Stuttgart/New York: Thieme; 2007. p. 33–44.

    Google Scholar 

  95. Perren SM, Pohler OEM, Schneider E. Titanium as implant material for osteosynthesis applications. In: Brunette DM, Tengvall P, Textor M, Thomson P, editors. Titanium in medicine. Berlin/Heidelberg/New York/Barcelona/Hongkong/London/Milan/Paris/Singapore/Tokyo: Springer; 2001. p. 771–825.

    Chapter  Google Scholar 

  96. Popov EP. Mechanics of materials. Englewood: Prentice-Hall; 1976.

    Google Scholar 

  97. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of the materials for fixation implants on local infection. An experimental study of steel versus titanium DC-Plates in rabbits. J Bone Joint Surg. 1996;78-B:647–51.

    Google Scholar 

  98. Johansson A, Lindgren JU, Nord CE, Svensson O. Local plate infections in a rabbit model. Injury. 1999;30:587–90.

    Article  CAS  PubMed  Google Scholar 

  99. Johansson A, Lindgren JU, Nord CE, Svensson O. Material and design in haematogenous implant-associated infections in a rabbit model. Injury. 1999;30:651–7.

    Article  CAS  PubMed  Google Scholar 

  100. Burstein AH, Wright TM. Fundamentals of orthopaedic biomechanics. Baltimore/Philadelphia/Hongkong/London/Munich/Sydney/Tokyo: Williams & Wilkins; 1994.

    Google Scholar 

  101. Stürmer KM. Elastic plate osteosynthesis, biomechanics, indications and technique in comparison with rigid osteosynthesis. Unfallchirurg. 1996;99:816–29.

    Article  PubMed  Google Scholar 

  102. Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne H. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999;13:401–6.

    Article  CAS  PubMed  Google Scholar 

  103. Ellis T, Bourgeault CA, Kyle RF. Screw position affects dynamic compression plate strain in an in vitro fracture model. J Orthop Trauma. 2001;15:333–7.

    Article  CAS  PubMed  Google Scholar 

  104. Field JR, Tornkvist H, Hearn TC, Sumner-Smith G, Woodside TD. The influence of screw omission on construction stiffness and bone surface strain in the application of bone plates to cadaveric bone. Injury. 1999;30:591–8.

    Article  CAS  PubMed  Google Scholar 

  105. Cordey J, Gautier E. Strain gauges used in the mechanical testing of bones. Part III: strain analysis, graphic determination of the neutral axis. Injury. 1999;30(Suppl):21–5.

    Google Scholar 

  106. Gautier E, Perren SM, Cordey J. Influence of the plate position relative to the bending direction onto the rigidity of a plate osteosynthesis - a theoretical analysis. Injury. 2000;31 Suppl 3:14–20.

    Article  Google Scholar 

  107. Gautier E, Perren SM, Cordey J. Strain distribution in plated and unplated sheep tibia. An Vivo Exp Injury. 2000;31(Suppl):37–44.

    Google Scholar 

  108. Blatter G, Weber BG. Wave plate osteosynthesis as a salvage procedure. Arch Orthop Trauma Surg. 1990;109:330–3.

    Article  CAS  PubMed  Google Scholar 

  109. Ring D, Jupiter JB, Sanders RA, Quintero J, Santoro VM, Ganz R, Marti RK. Complex nonunion of fractures of the femoral shaft treated by wave-plate osteosynthesis. J Bone Joint Surg. 1997;79-B:289–94.

    Article  Google Scholar 

  110. Ring D, Jupiter JB, Quintero J, Sanders RA, Marti RK. Atrophic ununited diaphyseal fractures of the humerus with a bony defect: treatment by wave-plate osteosynthesis. J Bone Joint Surg. 2000;82-B:867–71.

    Article  Google Scholar 

  111. Brunner CF, Weber BG. Special techniques in internal fixation. Berlin/Heidelberg/New York: Springer; 1982.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Gautier MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Gautier, E. (2016). Biomechanics of Osteosynthesis by Screwed Plates. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_29

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics