Skip to main content

Experimental In Vitro Methods for Research of Mechanotransduction in Human Osteoblasts

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Bone matrix is generated and organized according to the direction of mechanical force, e.g., following muscular contraction, impact with supporting surface and gravity. Cellular mechanotransduction from outer milieu, which is a biochemical expression of the external mechanical force via cellular pathways, determines the three dimensional structure of bone following interactions between its generation and resorption, i.e., remodeling and repair process by interaction between osteoblast and osteoclast activities. Of the latter two type of cells the osteoblast governs this complex process, partially following the external mechanical effect. Therefore understanding and recognizing of the nature of the cellular pathways in osteoblast mechnotransduction might reveal new therapeutic methods in numerous disabling bone pathologies due to the loss of bone mass or the loss of its structural integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin CT, Hausman MR. The cellular basis of Wolff’s law. Transduction of physical stimuli to skeletal adaptation. Rheum Dis Clin North Am. 1988;14(3):503–17.

    CAS  PubMed  Google Scholar 

  2. Rosenberg N, Rosenberg O, Soudry M. Osteoblasts in bone physiology – mini review. Rambam Maimonides Med J. 2012;3:1–7.

    Article  Google Scholar 

  3. Burger EH, Klein-Nulend J. Microgravity and bone cell mechanosensitivity. Bone. 1998;22:127S–30.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg N. The role of the cytoskeleton in mechanotransduction in human osteoblast-like cells. Hum Exp Toxicol. 2003;22:271–4.

    Article  PubMed  Google Scholar 

  5. Boal D. Chapter 8. Intermembrane forces. In: Boal D editor. Mechanics of cell. Cambridge: Cambridge University Press; 2002. p. 274–79.

    Google Scholar 

  6. Rosenberg N, Levy M, Francis M. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. Cytotechnology. 2002;39(3):125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buckley MJ, Banes AJ, Levin LG, Sumpio BE, Sato M, Jordan R, Gilbert J, Link GW, Tran Son Tay R. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner. 1988;4:225–36.

    CAS  PubMed  Google Scholar 

  8. Neidlinger-Wilke C, Wilke HJ, Claes L. Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res. 1994;12:70–8.

    Article  CAS  PubMed  Google Scholar 

  9. Jones DB, Nolte H, Scholubbers JG, Turner E, Veltel D. Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials. 1991;12:101–10.

    Article  CAS  PubMed  Google Scholar 

  10. Stanford CM, Morcuende JA, Brand RA. Proliferative and phenotypic responses of bone-like cells to mechanical deformation. J Orth Res. 1995;13:664–70.

    Article  CAS  Google Scholar 

  11. Banes AJ, Link GW, Gilbert JW, Tran Son Tay R, Monbureau O. Culturing cells in a mechanically active environment. Am Biotechnol Lab. 1990;8:12–22.

    CAS  PubMed  Google Scholar 

  12. Colombo A, Cahill PA, Lally C. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Proc Inst Mech Eng H. 2008;222:1235–45.

    Article  CAS  PubMed  Google Scholar 

  13. Pitsillides AA, Das-Gupta V, Simon D, Rawlinson SCF. In: Helfrich MH, Ralston SH, editors. Methods for analyzing bone cell responses to mechanical loading using in vitro monolayer and organ culture models. Bone research protocols. Totowa: Humana Press; 2003. p. 399–422.

    Google Scholar 

  14. Donanhue SW, Jacobs CR, Donanhue HJ. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am J Physiol. 2001;281:C1635–41.

    Google Scholar 

  15. Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donanhue HJ. Differential effect of steady versus oscillating flow on bone cells. J Biomech. 1998;31:969–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Partap S, Plunkett NA, O’Brien FJ. Bioreactors. In: Eberli D, editor. Tissue engineering. Tech – Open Access Publisher, Rijeka, Crotia. 2010. p. 323–33.

    Google Scholar 

  17. Rubin C, Li C, Sun Y, Fritton C, McLeod K. Non-invasive stimulation of trabecular bone formation via low magnitude, high frequency strain. Trans ORS. 1995;20:548.

    Google Scholar 

  18. Nigg BM. Acceleration. In: Nigg BM, Herzog W, editors. Biomechanics of the musculo-skeletal system. Secondth ed. Chichester: Wiley; 1998. p. 300–1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Rosenberg, N., Soudry, M. (2016). Experimental In Vitro Methods for Research of Mechanotransduction in Human Osteoblasts. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_26

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics