Skip to main content

Biomechanics of Pediatric Hip

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Congenital dislocation of the hip joint includes prenatal, acquired, and developmental dislocation (i.e., femoral head dislocates from the acetabulum gradually after birth). Most of this disease occurs while this disease is named as “congenital”. True congenital dislocation is often intractable, as it has severe dislocation and is accompanied by considerable anomalies. In true congenital dislocation, the acetabulum is extra remarkably shallow and steep, and anterosion of the femur is severe. In acquired or developmental dislocation, environmental factors have more influence on the occurrence of the dislocation than congenital ones. The kind of diaper is one of the most important factors. The prevalence of dislocation is high in some cold areas. In such area, diaper or clothes is set to fix the knee and the hip in the extended position to keep the children from the coldness. In hemilateral dislocation after birth, lying position has influence on its occurrence. Joint instability, which is caused by hormone around birth, and contracture due to the position may cause dislocation. In left wryneck position (i.e., the face rotates in the right and the neck flexes in the left), the trunk often takes right lateral position. In such position, the left hip joint takes adducted position and tends to have adduction contracture, and dislocation may occur in the left hip. The degree of the dislocation varies from children. Hamstring muscles have strong influence on the occurrence of the dislocation. These muscles push the femoral head proximally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vartan CK. The behaviour of the foetus in utero with special reference to the incidence of breech presentation at term. J Obstet Gynec Brit Emp. 1945;52:417–34.

    Article  CAS  Google Scholar 

  2. Tompkins P. An inquiry into the cause of breech presentation. Am J Obstet Gynec. 1946;51:595–606.

    Article  CAS  PubMed  Google Scholar 

  3. Wilkinson JA. A postnatal survey for congenital dislocation of the hip. J Bone Joint Surg. 1972;54B:40–9.

    Google Scholar 

  4. Michelson JE, Langenskiöld A. Dislocation or subluxation of the hip, regular sequels of immobilization of the knee in extension in young rabbits. J Bone Joint Surg. 1972;54A:1177–86.

    Google Scholar 

  5. Michele AA. Iliopsoas. Springfield: Charles C Thomas; 1962.

    Google Scholar 

  6. McKibbin B. Anatomical factors in the stability of the hip joint in the newborn. J Bone Joint Surg. 1970;52B:148–59.

    Google Scholar 

  7. Yamamuro T, Hama H, Takeda T, Shikata J, Sanada H. Sexual hormone in the experimental hip dislocation. Cent Jpn J Orthop Traumat. 1976;19:770–1.

    Google Scholar 

  8. Otani T. Studies on photoelastic stress analysis of congenital dislocation of the hip. J Jpn Orthop Assoc. 1964;37:1001–26.

    Google Scholar 

  9. Saito S. Change in the alignment of the lower extremities in children- A study of the cases with fractures of the femur and congenital hip dislocation of the hip. J Jpn Paed Orthop Assoc. 1993;3:148–56.

    Google Scholar 

  10. Schneider B, Laubenberger J, Jemlich S, Groene K, Weber HM, Langer M. Measurement of femoral antetorsion and tibial torsion by magnetic resonance imaging. Br J Radiol. 1997;70:575–9.

    Article  CAS  PubMed  Google Scholar 

  11. Drehmann F, Becker W. A simple clinical investigation method for the approximative rapid determination of the antetorsional angle of the neck of femur. Z Orthop. 1980;118:236–40.

    Article  CAS  PubMed  Google Scholar 

  12. Grote R, Elgeti H, Saure D. Determination of the antetorsional angle at the femur with axial computer tomography. Rontgenblatter. 1980;33:31–42.

    CAS  PubMed  Google Scholar 

  13. Tomczak RJ, Guenther KP, Rieber A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: comparison with CT in children and adults. AJR Am J Roentgenol. 1997;168:791–4.

    Article  CAS  PubMed  Google Scholar 

  14. Haspl M, Bilic R. Assessment of femoral neck-shaft and antetorsion angles. Int Orthop. 1996;1996(20):363–6.

    Google Scholar 

  15. Bruckl R, Grunert S, Rosemeyer B. Roentgenologic determination of the actual femoral neck-shaft and antetorsion angle. 2: Alternatives to the Rippstein and Muller procedure. Radiologe. 1986;26:305–9.

    CAS  PubMed  Google Scholar 

  16. Wissing H, Spira G. Determination of rotational defects of the femur by computer tomographic determination of the antetorsion angle of the femoral neck. Unfallchirurgie. 1986;12:1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Gunther KP, Kessler S, Tomczak R, Pfeifer P, Puhl W. Femoral anteversion: significance of clinical methods and imaging techniques in the diagnosis in children and adolescents. Z Orthop Ihre Grenzgeb. 1996;134:295–301.

    Article  CAS  PubMed  Google Scholar 

  18. Gormand E, Barral F, Roussille M, Bochu M, Fournet-Fayard J, Kholer R. Comparison between ultrasonic and x-ray computed tomographic measurements of femoral antetorsion in children. J Radiol. 1985;66:789–92.

    CAS  PubMed  Google Scholar 

  19. Clarac JP, Pries P, Laine M, Richer JP, Freychet H, Goubault F, Barret D, Hurmic A, Vandermarcq P, Drouineau J. Measurement of antetorsion of the femoral neck by ultrasonics. Comparison with x-ray computed tomography. Rev Chir Orthop. 1985;71:365–8.

    CAS  PubMed  Google Scholar 

  20. Badgley CE. Correction of clinical and anatomical facts leading to a conception of the etiology of congenital hip dysplasias. J Bone Joint Surg. 1943;25:503.

    Google Scholar 

  21. Badgley CE. Etiology of congenital dislocation of the hip. J Bone Joint Surg. 1949;31A:341.

    CAS  PubMed  Google Scholar 

  22. Lanz T, Mayet A. Die Gelenkkorper des menschlichen Huftgelenks in der progredienten phase ihrer umwegigen Ausformung. Z Anat. 1953;117:317.

    Article  Google Scholar 

  23. Le Damany P. Die angeborene Hüftgelenkverrenkung. Ihre Ursachen: ihre Mechanismus: ihre arthropologische Bedeutung. Z Orthop Chir. 1908;21:129.

    Google Scholar 

  24. Somerville EW. Development of congenital dislocation of the hip. J Bone Joint Surg. 1953;40A:803.

    Google Scholar 

  25. Chandler F. Anatomical study of congenital dislocation of the hip. J Bone Joint Surg. 1929;11:546.

    Google Scholar 

  26. Shands Jr AR, Steele MK. Torsion of the femur. A follow-up report on the use of the Dunlop method for its determination. J Bone Joint Surg. 1958;40A:1147.

    Google Scholar 

  27. Sylkin NN. Developmental tendency of the femur head following femoral head necrosis due to conservative treatment of a dislocated hip (2nd report). Z Orthop Ihre Grenzgeb. 1995;133:367–73.

    Article  CAS  PubMed  Google Scholar 

  28. Lingg G, Nebel G, Thomas W, Hering L. Value of computed tomography in congenital hip dysplasia and hip luxation. Rontgenblatter. 1983;36:407–13.

    CAS  PubMed  Google Scholar 

  29. Saito S, Kuroki Y, Uchida T, Mori Y. Experimentelle Untersuchungen uber die Entstehung der Antetorsion am Femur. Z Orthop. 1980;118:612.

    Google Scholar 

  30. Saito S, Kuroki Y, Uchida T. An experimental study on the change of the femoral antetorsion. J Jpn Orthop Assoc. 1978;52:1185.

    Google Scholar 

  31. Wilson PD, Jacob B, Schecter L. Slipped capital femoral epiphysis. J Bone Joint Surg. 1965;47A:1128–45.

    Google Scholar 

  32. Imhäuser G. Die jugendliche Hüftkopflösung bei steilem Schenkelhals. Z Orthop. 1959;91:403–13.

    Google Scholar 

  33. Harris R, Hobson KW. The endocrine basis for slipping of the upper femoral epiphysis. J Bone Joint Surg. 1950;32B:5–11.

    Google Scholar 

  34. Kim WC. Biomechanical properties of growth plate. J Jpn Paed Orthop Assoc. 1996;6:128–32.

    Google Scholar 

  35. Nakada D. Torsional strength of the epiphyseal plate and fracture patterns with aging, three-dimensional analysis with SEM. J Jpn Orthop Assoc. 1993;67:1045–54.

    CAS  Google Scholar 

  36. Morscher E. Zur Pathogenese der Epiphyseolysis capitis femoris. Arch Orthop Unfallchir. 1961;53:331–43.

    Article  CAS  PubMed  Google Scholar 

  37. Yoshida M, Kim WC, Arai Y, Inoue N, Watabe K, Takai N, Kusaka Y, Hirasawa Y. The effect of maturation on dynamic visco-elastic properties of epiphyseal plate in rabbit. J Jpn Clin Biomech. 1994;15:147–50.

    Google Scholar 

  38. Bright RW, Virginia R, Burstein AH. Epiphyseal-plate cartilage. J Bone Joint Surg. 1974;56A:688–703.

    Google Scholar 

  39. Chung SM, Batterman SC, Brighton CT. Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg. 1976;58A:94–103. 1989.

    Google Scholar 

  40. Amadio P, Ehrlich MG, Mankin HJ. Matrix synthesis in high density cultures of bovine epiphyseal chondrocytes. Connect Tissue Res. 1983;11:11–9.

    Article  CAS  PubMed  Google Scholar 

  41. Salter RB, Harris WR. Injuries involving the epiphyseal plate. J Bone Joint Surg. 1963;45A:587–622.

    Google Scholar 

  42. Brasher Jr HR. Epiphyseal fractures. A microscopic study of the healing process in rat. J Bone Joint Surg. 1959;41A:1055–4064.

    Google Scholar 

  43. Hurley JM, Betz RR, Loder RT, Davidson RS, Alburger PD, Steel HH. Slipped capital femoral epiphysis. The prevalence of late contralateral slip. J Bone Joint Surg. 1996;78A:226–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kusaba MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Saito, S., Kusaba, A. (2016). Biomechanics of Pediatric Hip. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics