Skip to main content

Biotribocorrosion of Implants

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Biotribocorrosion can be broadly defined as all the aspects of tribocorrosion, i.e. the degradation of surfaces by the combined effect of corrosion and wear, related to biological systems. Whereas tribology alone, also extended to friction-corrosion, corrosion-wear, wear-corrosion or (micro) abrasion-corrosion, is concerned with the phenomena occurring at the interface of surfaces in mutual motion (friction, lubrication and wear), corrosion is the science and engineering of chemical and electrochemical reactions at the interface between a material and the environment it is exposed to. In the case of biotribocorrosion, the environment is necessarily that of a living organism or a combination of living organisms (biofilm). Although all materials may suffer biotribocorrosion it is especially pronounced in case of metallic alloys due to the electrochemical nature of their interaction with aqueous environments such as the interior of a human body. Both corrosion and wear result in the weight loss over the exposed surface; however, the total weight loss of a tribosystem immersed in a corrosive environment is larger than a simple sum of the losses cause by corrosion and wear alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryu JJ, Letchuman S, Shrotriya P. Roughness evolution of metallic implant surfaces under contact loading and nanometer-scale chemical etching. J Mech Behav Biomed Mater. 2012;14:55–66.

    Article  CAS  PubMed  Google Scholar 

  2. Fischer A, Weiß S, Wimmer MA. The tribological difference between biomedical steels and CoCrMo-alloys. J Mech Behav Biomed Mater. 2012;9:50–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malkin AI. Regularities and mechanisms of the Rehbinder’s effect. Colloid J. 2012;74(2):223–38.

    Article  CAS  Google Scholar 

  4. Hesketh J, Ward M, Dowson D, Neville A. The composition of tribofilms produced on metal-on-metal hip bearings. Biomaterials. 2014;35(7):2113–9.

    Article  CAS  PubMed  Google Scholar 

  5. Mathew MT, Nagelli C, Pourzal R, Fischer A, Laurent MP, Jacobs JJ, Wimmer MA. Tribolayer formation in a metal-on-metal (MoM) hip joint: an electrochemical investigation. J Mech Behav Biomed Mater. 2014;29:199–212.

    Article  CAS  PubMed  Google Scholar 

  6. Perez N. Electrochemistry and corrosion science. Springer Science & Business Media, Springer US. 2004.

    Google Scholar 

  7. Marcus P. Corrosion mechanisms in theory and practice. 2nd ed. New York: Marcel Dekker Inc; 2002.

    Book  Google Scholar 

  8. Chen Y, Xu Z, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10(11):4561–73.

    Article  CAS  PubMed  Google Scholar 

  9. Ruzickova M, Hildebrand H, Virtanen S. On the stability of passivity of Ti-Al alloys in acidic environment. Z Phys Chem. 2005;219(11):1447–59.

    Article  CAS  Google Scholar 

  10. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci. 2009;54(3):397–425.

    Article  CAS  Google Scholar 

  11. Silva-Bermudez P, Rodil SE. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol. 2013;233:147–58.

    Article  CAS  Google Scholar 

  12. Cruz HV, Souza JCM, Henriques M, Rocha LA, Tribocorrosion and bio- tribocorrosion in the oral environment : the case of dental implants, In: J. Paulo Davim, editor. Biomedical Tribology. Nova Science Publishers, Inc. no. July 2015. 2011.

    Google Scholar 

  13. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941–53.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Li Y, Xiong J, Hodgson PD, Wen C. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater. 2009;5(9):3616–24.

    Article  CAS  PubMed  Google Scholar 

  15. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M. Novel titanium foam for bone tissue engineering. J Mater Res. 2002;17(10):2633–9.

    Article  CAS  Google Scholar 

  16. Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3(2):335–53.

    Article  CAS  PubMed  Google Scholar 

  17. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 2010;28(4):198–206.

    Article  CAS  PubMed  Google Scholar 

  18. Eisenbarth E, Velten D, Müller M, Thull R, Breme J. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials. 2004;25(26):5705–13.

    Article  CAS  PubMed  Google Scholar 

  19. Han M-J, Choe H-C, Chung C-H. Surface characteristics of clinically used dental implant screws. Met Mater Int. 2005;11(6):449–56.

    Article  CAS  Google Scholar 

  20. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23(9):1995–2002.

    Article  CAS  PubMed  Google Scholar 

  21. Bergmann G, Graichen F, Rohlmann A, Verdonschot N, Van Lenthe GH. Frictional heating of total hip implants. Part 2: finite element study. J Biomech. 2001;34(4):429–35.

    Article  CAS  PubMed  Google Scholar 

  22. Li S, Chien S, Brånemark PI. Heat shock-induced necrosis and apoptosis in osteoblasts. J Orthop Res. 1999;17(6):891–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Wang Y. Tribology of endoprostheses. In: Poitout D, editor. Biomechanics and biomaterials in orthopedics SE – 16. London: Springer; 2004. p. 168–78.

    Chapter  Google Scholar 

  24. Farhoudi H, Oskouei RH, Jones CF, Taylor M. A novel analytical approach for determining the frictional moments and torques acting on modular femoral components in total hip replacements. J Biomech. 2015;48(6):976–83.

    Article  CAS  PubMed  Google Scholar 

  25. Dumbleton JH. Tribology of natural and artificial joints. New York: Elsevier; 1981.

    Google Scholar 

  26. Brockett C, Williams S, Zhongmin J, Isaac G, Fisher J. Friction of total hip replacements with different bearings and loading conditions. J Biomed Mater Res B Appl Biomater. 2007;81B(2):508–15.

    Article  CAS  Google Scholar 

  27. Kim K, Geringer J, Pellier J, MacDonald DD. Fretting corrosion damage of total hip prosthesis: friction coefficient and damage rate constant approach. Tribol Int. 2013;60:10–8.

    Article  CAS  Google Scholar 

  28. Fan N, Morlock MM, Bishop NE, Huber G, Hoffmann N, Ciavarella M, Chen GX, Hothan A, Witt F. The influence of stem design on critical squeaking friction with ceramic bearings. J Orthop Res. 2013;31(10):1627–32.

    Article  CAS  PubMed  Google Scholar 

  29. Damm P, Dymke J, Ackermann R, Bender A, Graichen F, Halder A, Beier A, Bergmann G. Friction in total hip joint prosthesis measured in vivo during walking. PLoS One. 2013;8(11):1–8.

    Article  CAS  Google Scholar 

  30. Myant C, Underwood R, Fan J, Cann PM. Lubrication of metal-on-metal hip joints: the effect of protein content and load on film formation and wear. J Mech Behav Biomed Mater. 2012;6:30–40.

    Article  CAS  PubMed  Google Scholar 

  31. Tozzi G, Zhang Q, Tong J. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression. J Biomech. 2014;47(14):3466–74.

    Article  PubMed  Google Scholar 

  32. Janssen D, Mann KA, Verdonschot N. Finite element simulation of cement-bone interface micromechanics: a comparison to experimental results. J Orthop Res. 2009;27(10):1312–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. ASTM International G40-13. Standard terminology relating to wear and erosion. ASTM B. Stand. Vol. 03.02; 2013.

    Google Scholar 

  34. Alonso Gil R, Igual Muñoz A. Influence of the sliding velocity and the applied potential on the corrosion and wear behavior of HC CoCrMo biomedical alloy in simulated body fluids. J Mech Behav Biomed Mater. 2011;4(8):2090–102.

    Article  CAS  Google Scholar 

  35. Galetz MC, Seiferth SH, Theile B, Glatzel U. Potential for adhesive wear in friction couples of UHMWPE running against oxidized zirconium, titanium nitride coatings, and cobalt-chromium alloys. J Biomed Mater Res – Part B Appl Biomater. 2010;93(2):468–75.

    Article  PubMed  CAS  Google Scholar 

  36. Lee Y-S, Niinomi M, Nakai M, Narita K, Cho K. Predominant factor determining wear properties of β-type and (α + β)-type titanium alloys in metal-to-metal contact for biomedical applications. J Mech Behav Biomed Mater. 2015;41:208–20.

    Article  PubMed  CAS  Google Scholar 

  37. Brandt J-M, Gascoyne TC, Guenther LE, Allen A, Hedden DR, Turgeon TR, Bohm ER. Clinical failure analysis of contemporary ceramic-on-ceramic total hip replacements. Proc Inst Mech Eng H. 2013;227(8):833–46.

    Article  PubMed  Google Scholar 

  38. Hesketh J, Hu X, Yan Y, Dowson D, Neville A. Biotribocorrosion: some electrochemical observations from an instrumented hip joint simulator. Tribol Int. 2013;59:332–8.

    Article  CAS  Google Scholar 

  39. Rieker CB, Koettig P, Schoen R, Windier M, Wyss UP. Clinical wear performance of metal-on-metal hip arthroplasties. In: Jacobs J, Craig T, editors. Alternative bearing surfaces in total joint replacement, ASTM STP 1346. 1998; p. 144–56.

    Google Scholar 

  40. Mattei L, Di Puccio F. Wear simulation of metal-on-metal hip replacements with frictional contact. J Tribol. 2013;135(2):021402.

    Article  Google Scholar 

  41. ASTM International G119-09. Standard guide for determining amount of synergism between wear and corrosion. ASTM B. Stand. Vol. 03.02, 2009.

    Google Scholar 

  42. Sun D, Wharton JA, Wood RJK. Micro- and nano-scale tribo-corrosion of cast CoCrMo. Tribol Lett. 2011;41(3):525–33.

    Article  CAS  Google Scholar 

  43. Diomidis N, Mischler S, More NS, Roy M. Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomater. 2012;8(2):852–9.

    Article  CAS  PubMed  Google Scholar 

  44. Dimah MK, Devesa Albeza F, Amigó Borrás V, Igual Muñoz A. Study of the biotribocorrosion behaviour of titanium biomedical alloys in simulated body fluids by electrochemical techniques. Wear. 2012;294–295:409–18.

    Article  CAS  Google Scholar 

  45. Runa MJ, Mathew MT, Fernandes MH, Rocha LA. First insight on the impact of an osteoblastic layer on the bio-tribocorrosion performance of Ti6Al4V hip implants. Acta Biomater. 2015;12:341–51.

    Article  CAS  PubMed  Google Scholar 

  46. Dearnley PA, Aldrich-Smith G. Corrosion-wear mechanisms of hard coated austenitic 316L stainless steels. Wear. 2004;256(5):491–9.

    Article  CAS  Google Scholar 

  47. Komotori J, Lee B, Dong H, Dearnley P. Corrosion response of surface engineered titanium alloys damaged by prior abrasion. Wear. 2001;251(1–12):1239–49.

    Article  Google Scholar 

  48. Yan Y, Neville A, Hesketh J, Dowson D. Real-time corrosion measurements to assess biotribocorrosion mechanisms with a hip simulator. Tribol Int. 2013;63:115–22.

    Article  CAS  Google Scholar 

  49. Shi W, Dong H, Bell T. Tribological behaviour and microscopic wear mechanisms of UHMWPE sliding against thermal oxidation-treated Ti6A14V. Mater Sci Eng A. 2000;291(1–2):27–36.

    Article  Google Scholar 

  50. Cao S, Guadalupe Maldonado S, Mischler S. Tribocorrosion of passive metals in the mixed lubrication regime: theoretical model and application to metal-on-metal artificial hip joints. Wear. 2015;324–325:55–63.

    Article  CAS  Google Scholar 

  51. Hesketh J, Meng Q, Dowson D, Neville A. Biotribocorrosion of metal-on-metal hip replacements: How surface degradation can influence metal ion formation. Tribol Int. 2013;65:128–37.

    Article  CAS  Google Scholar 

  52. Stack MM. Bridging the gap between tribology and corrosion: from wear maps to Pourbaix diagrams – Runner-up for the Guy Bengough Award, IoM3, 2007. Int Mater Rev. 2005;50(1):1–18.

    Article  CAS  Google Scholar 

  53. Stack MM, Jawan H, Mathew MT, On the construction of micro-abrasion maps for a steel/polymer couple in corrosive environments. Tribol Int. 2005;38(9 SPEC. ISS):848–56.

    Article  CAS  Google Scholar 

  54. Sadiq K, Stack MM, Black RA. Wear mapping of CoCrMo alloy in simulated bio-tribocorrosion conditions of a hip prosthesis bearing in calf serum solution. Mater Sci Eng C. 2015;49:452–62.

    Article  CAS  Google Scholar 

  55. Golish SR, Anderson PA. Bearing surfaces for total disc arthroplasty: metal-on-metal versus metal-on-polyethylene and other biomaterials. Spine J. 2012;12(8):693–701.

    Article  PubMed  Google Scholar 

  56. Jhurani SM, Fred Higgs C. An elastohydrodynamic lubrication (EHL) model of wear particle migration in an artificial hip joint. Tribol Int. 2010;43(8):1326–38.

    Article  CAS  Google Scholar 

  57. Dumbleton JH, Manley MT. Metal-on-metal total hip replacement: What does the literature say? J Arthroplasty. 2005;20(2):174–88.

    Article  PubMed  Google Scholar 

  58. Grosse S, Haugland HK, Lilleng P, Ellison P, Hallan G, Høl PJ. Wear particles and ions from cemented and uncemented titanium-based hip prostheses-A histological and chemical analysis of retrieval material. J Biomed Mater Res Part B Appl Biomater. 2015;103(3):709–17.

    Article  PubMed  CAS  Google Scholar 

  59. Willert H-G, Buchhorn GH, Fayyazi A, Flury R, Windler M, Köster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87(1):28–36.

    Article  PubMed  Google Scholar 

  60. Pandit H, Whitwell D, Gibbons CLM, Athanasou N, Gill HS, Murray DW. Pseudotumours associated with metal-on- metal hip resurfacings. J Bone Joint Surg. 2008;90(7):847–51.

    Article  CAS  Google Scholar 

  61. Bayley N, Khan H, Grosso P, Hupel T, Stevens D, Snider M, Schemitsch E, Kuzyk P. What are the predictors and prevalence of pseudotumor and elevated metal ions after large-diameter metal-on-metal THA? Clin Orthop Relat Res. 2014;473(2):477–84.

    Article  PubMed Central  Google Scholar 

  62. Magone K, Luckenbill D, Goswami T. Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg. 2015;135(5):683–95.

    Article  PubMed  Google Scholar 

  63. Gustafson K, Jakobsen SS, Lorenzen ND, Thyssen JP, Johansen JD, Bonefeld CM, Stilling M, Baad-Hansen T, Søballe K. Metal release and metal allergy after total hip replacement with resurfacing versus conventional hybrid prosthesis. Acta Orthop. 2014;85(4):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  64. osada OM, Tate RJ, Grant MH. Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro. J Appl Toxicol. 2015;35(6):614–22.

    Google Scholar 

  65. Gilbert JL, Mali S, Urban RM, Silverton CD, Jacobs JJ. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: emergent behavior in a new mechanism of in vivo corrosion. J Biomed Mater Res – Part B Appl Biomater. 2012;100(2):584–94.

    Article  PubMed  CAS  Google Scholar 

  66. Hosman AH, van der Mei HC, Bulstra SK, Busscher HJ, Neut D. Effects of metal-on-metal wear on the host immune system and infection in hip arthroplasty. Acta Orthop. 2010;81(5):526–34.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Esposito CI, Wright TM, Goodman SB, Berry DJ. What is the trouble with trunnions? Clin Orthop Relat Res. 2014;472:3652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ebramzadeh E, Campbell P, Tan TL, Nelson SD, Sangiorgio SN. Can wear explain the histological variation around metal-on-metal total hips? Clin Orthop Relat Res. 2014;473(2):487–94.

    Article  PubMed Central  Google Scholar 

  69. Latteier MJ, Berend KR, Lombardi AV, Ajluni AF, Seng BE, Adams JB. Gender is a significant factor for failure of metal-on-metal total hip arthroplasty. J Arthroplasty. 2011;26 Suppl 6:19–23.

    Google Scholar 

  70. Jakobsen SS, Lidén C, Søballe K, Johansen JD, Menné T, Lundgren L, Bregnbak D, Møller P, Jellesen MS, Thyssen JP. Failure of total hip implants: metals and metal release in 52 cases. Contact Dermatitis. 2014;71(6):319–25.

    Article  CAS  PubMed  Google Scholar 

  71. Mattei L, Di Puccio F, Piccigallo B, Ciulli E. Lubrication and wear modelling of artificial hip joints: a review. Tribol Int. 2011;44(5):532–49.

    Article  Google Scholar 

  72. Mattei L, Di Puccio F, Ciulli E. A comparative study of wear laws for soft-on-hard hip implants using a mathematical wear model. Tribol Int. 2013;63:66–77.

    Article  CAS  Google Scholar 

  73. ASTM International G31-12a/NACE TM0169. Standard guide for laboratory immersion corrosion testing of metals. ASTM B. Stand. Vol. 03.02. 2012.

    Google Scholar 

  74. Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  75. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy, vol. 48. Hoboken: Wiley; 2008.

    Book  Google Scholar 

  76. Barão VA, Mathew MT, Assunção WG, Yuan JC, Wimmer MA, Sukotjo C. The role of lipopolysaccharide on the electrochemical behavior of titanium. J Dent Res. 2011;90(5):613–8.

    Article  PubMed  CAS  Google Scholar 

  77. Perez N. Electrochemistry and corrosion science. Dordrecht: Springer Science & Business Media, Springer US. 2004.

    Google Scholar 

  78. Dowson D, Hardaker C, Flett M, Isaac GH. A hip joint simulator study of the performance of metal-on-metal joints: part I: the role of materials. J Arthroplasty. 2004;19(8 Suppl):118–23.

    Google Scholar 

  79. ISO 14242-1:2014 – Implants for surgery – Wear of total hip-joint prostheses – Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test. [Online]. Available: http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63073. Accessed 29 July 2015.

  80. Oliveira ALL, Trigo FC, Martins FPR. Quantitative evaluation of parameters used in wear testing simulators of total hip arthroplasty components. Wear. 2014;313(1–2):1–10.

    Article  CAS  Google Scholar 

  81. Affatato S, Spinelli M, Zavalloni M, Mazzega-Fabbro C, Viceconti M. Tribology and total hip joint replacement: current concepts in mechanical simulation. Med Eng Phys. 2008;30(10):1305–17.

    Article  CAS  PubMed  Google Scholar 

  82. Asseman F. Comments on ‘tribology and total hip joint replacement: current concepts in mechanical simulation’ [Med. Eng. Phys. 2008;30:1305–17]. Med Eng Phys. 2009;31(6):730.

    Article  PubMed  Google Scholar 

  83. Zietz C, Fabry C, Reinders J, Dammer R, Kretzer JP, Bader R, Sonntag R. Wear testing of total hip replacements under severe conditions. Expert Rev Med Devices. 2015;12(4):393–410.

    Article  CAS  PubMed  Google Scholar 

  84. Grillini L, Affatato S. How to measure wear following total hip arthroplasty. Hip Int. 2013;23(3):233–42.

    Article  PubMed  Google Scholar 

  85. Krismer M, Biedermann R. How to measure wear following total hip arthroplasty – EBRA not mentioned! Letter to the Editor and Authors’ response. Hip Int. 2014;24(6):664–5.

    Article  PubMed  Google Scholar 

  86. Lu Z, McKellop HA. Accuracy of methods for calculating volumetric wear from coordinate measuring machine data of retrieved metal-on-metal hip joint implants. Proc Inst Mech Eng Part H J Eng Med. 2014;228(3):237–49.

    Article  Google Scholar 

  87. Knowlton CB, Wimmer MA. An autonomous mathematical reconstruction to effectively measure volume loss on retrieved polyethylene tibial inserts. J Biomed Mater Res – Part B Appl Biomater. 2013;101 B(3):449–57.

    Google Scholar 

  88. Damm P, Bender A, Bergmann G. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking. PLoS One. 2015;10(3):e0120438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Oliveira LYS, Kuromoto NK, Siqueira CJM. Treating orthopedic prosthesis with diamond-like carbon: minimizing debris in Ti6Al4V. J Mater Sci Mater Med. 2014;25(10):2347–55.

    Article  CAS  PubMed  Google Scholar 

  90. Österle W, Klaffke D, Griepentrog M, Gross U, Kranz I, Knabe C. Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces. Wear. 2008;264(7–8):505–17.

    Article  CAS  Google Scholar 

  91. Cai JB, Wang XL, Bai WQ, Wang DH, Gu CD, Tu JP. Microstructure, mechanical and tribological properties Of A-C/A-C:Ti nanomultilayer film. Surf Coat Technol. 2013;232:403–11.

    Article  CAS  Google Scholar 

  92. Ortega-Saenz JA, Alvarez-Vera M, Hernandez-Rodriguez MAL. Biotribological study of multilayer coated metal-on-metal hip prostheses in a hip joint simulator. Wear. 2013;301(1–2):234–42.

    Article  CAS  Google Scholar 

  93. Azzi M, Paquette M, Szpunar JA, Klemberg-Sapieha JE, Martinu L. Tribocorrosion behaviour of DLC-coated 316L stainless steel. Wear. 2009;267(5–8):860–6.

    Article  CAS  Google Scholar 

  94. Leslie IJ, Williams S, Brown C, Anderson J, Isaac G, Hatto P, Ingham E, Fisher J. Surface engineering: a low wearing solution for metal-on-metal hip surface replacements. J Biomed Mater Res – Part B Appl Biomater. 2009;90(2):558–65.

    Article  PubMed  CAS  Google Scholar 

  95. Mallia B, Dearnley PA. The corrosion – wear response of Cr – Ti coatings. Wear. 2007;263:679–90.

    Article  CAS  Google Scholar 

  96. Dearnley PA, Mallia B. The chemical wear (corrosion-wear) of novel Cr based hard coated 316L austenitic stainless steels in aqueous saline solution. Wear. 2012;306(1–2):263–75.

    Google Scholar 

  97. Balagna C, Faga MG, Spriano S. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement. Mater Sci Eng C. 2012;32(4):887–95.

    Article  CAS  Google Scholar 

  98. Balagna C, Faga MG, Spriano S. Tribological behavior of a Ta-based coating on a Co-Cr-Mo alloy. Surf Coat Technol. 2014;258:1159–70.

    Article  CAS  Google Scholar 

  99. Ding MH, Wang BL, Li L, Zheng YF. A study of TaxC1-x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering. Appl Surf Sci. 2010;257(3):696–703.

    Article  CAS  Google Scholar 

  100. Serro AP, Completo C, Colaço R, dos Santos F, da Silva CL, Cabral JMS, Araújo H, Pires E, Saramago B. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf Coat Technol. 2009;203(24):3701–7.

    Article  CAS  Google Scholar 

  101. Wang S, Liu Y, Zhang C, Liao Z, Liu W. The improvement of wettability, biotribological behavior and corrosion resistance of titanium alloy pretreated by thermal oxidation. Tribol Int. 2014;79:174–82.

    Article  CAS  Google Scholar 

  102. Dearnley PA, Dahm KL, Çimenoğlu H. The corrosion-wear behaviour of thermally oxidised CP-Ti and Ti-6Al-4V. Wear. 2004;256(5):469–79.

    Google Scholar 

  103. García JA, Díaz C, Mändl S, Lutz J, Martínez R, Rodríguez RJ. Tribological improvements of plasma immersion implanted CoCr alloys. Surf Coat Technol. 2010;204(18–19):2928–32.

    Article  CAS  Google Scholar 

  104. Qi H, Wu HY. Effect of surface modification of pure Ti on tribological and biological properties of bone tissue. Surf Eng. 2013;29(4):300–5.

    Article  CAS  Google Scholar 

  105. Çelik A, Aslan M, Yetim AF, Bayrak Ö. Wear behavior of plasma oxidized cocrmo alloy under dry and simulated body fluid conditions. J Bionic Eng. 2014;11(2):303–10.

    Article  Google Scholar 

  106. Pierret C, Maunoury L, Monnet I, Bouffard S, Benyagoub A, Grygiel C, Busardo D, Muller D, Höche D. Friction and wear properties modification of Ti-6Al-4V alloy surfaces by implantation of multi-charged carbon ions. Wear. 2014;319(1–2):19–26.

    Article  CAS  Google Scholar 

  107. Buhagiar J, Qian L, Dong H. Surface property enhancement of Ni-free medical grade austenitic stainless steel by low-temperature plasma carburising. Surf Coat Technol. 2010;205(2):388–95.

    Article  CAS  Google Scholar 

  108. Lutz J, Mändl S. Reduced tribocorrosion of CoCr alloys in simulated body fluid after nitrogen insertion. Surf Coatings Technol. 2010;204(18–19):3043–6.

    Article  CAS  Google Scholar 

  109. Wang Q, Zhang L, Dong J. Effects of plasma nitriding on microstructure and tribological properties of CoCrMo alloy implant materials. J Bionic Eng. 2010;7(4):337–44.

    Article  Google Scholar 

  110. Guo Z, Pang X, Yan Y, Gao K, Volinsky AA, Zhang T-Y. CoCrMo alloy for orthopedic implant application enhanced corrosion and tribocorrosion properties by nitrogen ion implantation. Appl Surf Sci. 2015;347:23–34.

    Article  CAS  Google Scholar 

  111. Balla VK, Soderlind J, Bose S, Bandyopadhyay A. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. J Mech Behav Biomed Mater. 2014;32:335–44.

    Article  CAS  PubMed  Google Scholar 

  112. Tarabolsi M, Klassen T, Mantwill F, Gärtner F, Siegel F, Schulz AP. Patterned CoCrMo and Al2O3 surfaces for reduced free wear debris in artificial joint arthroplasty. J Biomed Mater Res – Part A. 2013;101(12):3447–56.

    Article  CAS  Google Scholar 

  113. Luo X, Li X, Sun Y, Dong H. Tribocorrosion behavior of S-phase surface engineered medical grade Co-Cr alloy. Wear. 2013;302(1–2):1615–23.

    Article  CAS  Google Scholar 

  114. Buhagiar J, Jung A, Gouriou D, Mallia B, Dong H. S-phase against S-phase tribopairs for biomedical applications. Wear. 2013;301(1–2):280–9.

    Article  CAS  Google Scholar 

  115. Choudhury D, Walker R, Roy T, Paul S, Mootanah R. Performance of honed surface profiles to artificial hip joints: an experimental investigation. Int J Precis Eng Man. 2013;14(10):1847–53.

    Article  Google Scholar 

  116. Gascoyne TC, Dyrkacz RM, Turgeon TR, Burnell CD, Wyss UP, Brandt J-M. Corrosion on the acetabular liner taper from retrieved modular metal-on-metal total hip replacements. J Arthroplasty. 2014;29(10):2049–52.

    Article  PubMed  Google Scholar 

  117. Dyrkacz RMR, Brandt JM, Ojo OA, Turgeon TR, Wyss UP. The influence of head size on corrosion and fretting behaviour at the head-neck interface of artificial hip joints. J Arthroplasty. 2013;28(6):1036–40.

    Article  PubMed  Google Scholar 

  118. Kretzer JP, Kleinhans JA, Jakubowitz E, Thomsen M, Heisel C. A meta-analysis of design- and manufacturing-related parameters influencing the wear behavior of metal-on-metal hip joint replacements. J Orthop Res. 2009;27(11):1473–80.

    Article  PubMed  Google Scholar 

  119. Donaldson FE, Coburn JC, Siegel KL. Total hip arthroplasty head-neck contact mechanics: a stochastic investigation of key parameters. J Biomech. 2014;47(7):1634–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work has been supported by Fondo Nacional de Desarollo Cientifico y Technologico Chile (FONDECYT), project N°1121085 and project N°1141107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Walczak MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Walczak, M., Sancy, M. (2016). Biotribocorrosion of Implants. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_19

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics