Skip to main content

Striated Muscles, an Underestimated Natural Biomaterial: Their Essential Contribution to Healing and Reconstruction of Bone Defects

  • Chapter
  • First Online:
Biomechanics and Biomaterials in Orthopedics

Abstract

Surgery of the Musculoskeletal System is the most vibrant, quickly developing and enlarging reconstructive surgical specialty of this Century. The current 10 years are dedicated to this subject, and entitled “The bone and joint decade” which is a tribute to this subject’s significance. The past 35 years have been the stage for more significant developments and advances in reconstructive surgery of the Musculoskeletal System then all the previous decades from the time the name of “Ortho-Paeis” was cornered during the Industrial Revolution. Studies into the mechanical properties of the thin wire hybrid three plane, circular external fixator, have opened and enlarged the understanding of biological processes stimulated and supported by the above mentioned mechanical environment. Thus, with time, the crucial role played by striated muscles in the physiology of bone growth and repair is attaining broader recognition and understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calhoun JH, Li F, Bauford WL, Lehman T, Ledbetter FR, Lowery R. Rigidity of half-pins for the Ilizarov external fixator. Bull Hosp Jt Dis Orthop Inst. 1992;52(1):21–6.

    CAS  Google Scholar 

  2. Ilizarov GA. Clinical application of the tension stress effect for limb lengthening. Clin Orthop. 1990;250:8–26.

    PubMed  Google Scholar 

  3. Ilizarov GA. Transosseous osteosynthesis. Heidelberg: Springer; 1991. p. 3–279.

    Google Scholar 

  4. Jorgens C, Schmidt HG, Schumann U, Fink B. Ilizarov ring fixation and its technical application. Unfallchirurg. 1992;95(11):529–33.

    Google Scholar 

  5. Paley D, Catangi M, Argnani F, Villa A, Benedetti GB, Cattaneo R. Ilizarov treatment of tibial nonunions with bone loss. Clin Orthop. 1989;141:146.

    Google Scholar 

  6. Gasser B, Bowman B, Wyder D, Schneider E. Stiffness characteristics of the circular Ilizarov device as opposed to conventional external fixator. J Biomech Eng. 1990;112:15.

    Article  CAS  PubMed  Google Scholar 

  7. Aronson IA, Harp JH. Mechanical considerations in using tensioned wires in a transosseous external fixation system. Clin Orthop. 1992;280:23–9.

    PubMed  Google Scholar 

  8. Monticelli G, Spinelli R. Limb lengthening by closed metaphyseal corticotomy. Ital J Orthop Traumatol. 1983;4:139–50.

    Google Scholar 

  9. Hardy JM. Le fixateur externe monolateral “CAPUCINE”. Presented at the 18th SICOT meeting. Montreal; 1990. Poster No. 94, p. 492.

    Google Scholar 

  10. Wasserstein I, Correl J, Niethard FU. Closed distraction epiphysiolysis for leg lengthening and axis correction of the leg in children. Z Orthop. 1986;124(B):743–50.

    Article  CAS  PubMed  Google Scholar 

  11. Wagner R. Operative lengthening of femur. Clin Orthop. 1978;136:125–42.

    PubMed  Google Scholar 

  12. Green SA, Harris NL, Wall DM, Iskanian J, Marinow H. The Rancho mounting technique for Ilizarov method. A preliminary report. Clin Orthop. 1992;280:104–16.

    PubMed  Google Scholar 

  13. DeBastiani G, Aldergheri R, Renzi-Brivio L, Trivella G. Limb lengthening by callus distraction (Callotasis). J Pediatr Orthop. 1987;7:129–34.

    Article  CAS  Google Scholar 

  14. Kenwright J. The influence of cyclic loading upon fracture healing. J R Coll Surg Ed. 1989;34(3):160.

    Google Scholar 

  15. Fleming B, Paley D, Kristiansen T, Pope M. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop. 1989;241:95–105.

    PubMed  Google Scholar 

  16. Green SA. The use of wires and pins. Tech Orthop. 1990;5:19–25.

    Article  Google Scholar 

  17. Alonso JE, Regazzoni P. The use of Ilizarov concept with the AO/ASIF tubular fixator in the treatment of segmental defects. Orthop Clin North Am. 1990;21(4):655–65.

    CAS  PubMed  Google Scholar 

  18. Uhli RL, Goldstock L, Carter AT, Lozman J. Hybrid external fixation for bicondylar tibial plateau fractures. Presented at the 61st American Academy of Orthopaedic Surgeons meeting, New Orleans; 26 Feb 1994. p. 192.

    Google Scholar 

  19. Weiner L. Fixation for complex tibial plateau fractures hybrid fixator. Presented at the orthopaedic trauma association specialty day symposium, 61st American Academy of Orthopaedic Surgeons meeting, New Orleans;, 26 Feb 1994.

    Google Scholar 

  20. Chamay A, Tschentz P. Mechanical influence in bone remodeling. Experimental research on Wolffs law. J Biomech. 1972;5:173.

    Article  CAS  PubMed  Google Scholar 

  21. Goodship AE, Kenwright J. The influence of induced micro-motion upon the healing of experimental tibia fractures. J Bone Joint Surg. 1985;67(b):650.

    Google Scholar 

  22. Kempson GE, Campbell D. The comparative stiffness of external fixation frames. Injury. 1981;12:297.

    Article  CAS  PubMed  Google Scholar 

  23. Kristiansen T, Fleming B, Neal G, Reinecke S, Pope MH. Comparative study of fracture gap motion in external fixation. Clin Biomech. 1987;2:191.

    Article  CAS  Google Scholar 

  24. Panjoli MM, White AA, Wolf JW. A biomechanical cyclic compression of fracture healing in long bones. Acta Orthop Scand. 1979;50:653.

    Article  Google Scholar 

  25. Rubin CT, Lonjon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg. 1987;66(A):397.

    Google Scholar 

  26. Sarmiento A, Schaeffer JF, Beckerman L, Latta L, Emis JE. Fracture healing in rat femur is affected by functional weight bearing. J Bone Joint Surg. 1977;59(A):367.

    Google Scholar 

  27. Wu JJ, Shyr HS, Chao EYS, Kelly PJ. Comparison of osteotomy healing under external fixation devices with different stiffness characteristics. J Bone Joint Surg. 1984;66(A):1258.

    Google Scholar 

  28. Chao EYS. Orthopaedic biomechanics. The past, present and future. Int Orthop. 1996;20:239–43.

    Article  CAS  PubMed  Google Scholar 

  29. Stein H, Perren SM, Moscheiff R, Baumgart F, Cordey J. The spontaneous decline in the transfixing K-wire’s tension of the circular external fixator. Orthopedics. 2001 (in press).

    Google Scholar 

  30. Stein H, Cordey J, Perren SM. Segment transport for biological reconstruction of bone defects. Injury. 1993;Suppl 24(2):20–4.

    Google Scholar 

  31. Stein H, Coleman R, Mosheiff R, Cordey J, Rahn BA, Reznick A. Changes induced in limb muscles by distraction osteogenesis. Trans 43rd ORS meeting, San Francisco; 1997, p. 703.

    Google Scholar 

  32. Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H. The vascular supply to bone formed by distraction osteogenesis. An experimental study. J Bone Joint Surg. 1996;78-B:497–8.

    Google Scholar 

  33. Delprete C, Golo MM. Mechanical performance of external fixator with wires for the treatment of bone fractures. Part 1. Load displacement behavior. J Biomech Eng. 1993;115:29–36.

    Article  CAS  PubMed  Google Scholar 

  34. Stein H, Cordey J, Mosheiff R, Perren SM. Observation on the stiffness of neogenetic bone, produced by distraction or segment transport, and it’s relationship to bone density. In: Wolter D, Hansis M, Havemann D, editors. 150 years Fixateursysteme. Berlin/Heidelberg/New York: Springer; 1995, p. 47–9.

    Google Scholar 

  35. Younger ASE, Mackenzie WG, Morrison JB. Femoral forces during limb lengthening in children. Clin Orthop. 1994;301:55–63.

    PubMed  Google Scholar 

  36. Solomonow M, et al. EMG-force model: dependence on control strategy and fiber composition. IEEE Trans Biomed Eng. 1987;34:692–702.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson M, et al. Data on the distribution of fiber types in thirty six human muscles. J Neurophysiol. 1965;28:85–99.

    Google Scholar 

  38. Solomonow M, et al. EMG-force of skeletal muscle: contraction rate and motor units control strategy. EMG Clin Neurophysiol. 1990;30:141–52.

    CAS  Google Scholar 

  39. Henneman E, et al. Functional significance of cell size in spinal motor neurons. J Neurophysiology. 1965;28:560–80.

    CAS  PubMed  Google Scholar 

  40. Bernardi M, et al. Motor unit recruitment strategy changes with skill acquisition. Eur J Appl Physiol. 1996;74:52–9.

    Article  CAS  Google Scholar 

  41. Fugelvand A, et al. Detection of motor unit action potentials with surface electrodes: electrodes size and spacing. Biol Cybernetics. 1992;67:143–53.

    Article  Google Scholar 

  42. Solomonow M, et al. Surface and wire EMG cross-talk in neighbouring muscles. J EMG Kinesiol. 1994;4:131–42.

    Article  CAS  Google Scholar 

  43. Baratta RV, et al. Methods to reduce the variability of EMG power spectrum estimates. J EMG Kinesiol. 1998;8:279–85.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Solomonow PhD, MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Stein, H., Solomonow, M. (2016). Striated Muscles, an Underestimated Natural Biomaterial: Their Essential Contribution to Healing and Reconstruction of Bone Defects. In: Poitout, D. (eds) Biomechanics and Biomaterials in Orthopedics. Springer, London. https://doi.org/10.1007/978-1-84882-664-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-664-9_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-663-2

  • Online ISBN: 978-1-84882-664-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics