Skip to main content

Coronary CT Angiography: Native Vessels

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Visualization of the coronary arteries has been the major focus of cardiac CT in the past years. Noninvasive “coronary CT angiography” has tremendous clinical potential for detecting or ruling out coronary artery stenoses in selected patients. In addition, imaging of coronary atherosclerotic plaque may play a potential role in risk stratification. However, spatial resolution and temporal resolution of CT imaging, even with the latest scanner generations, are not equal to invasive coronary angiography. Interpreters of coronary CT angiography data sets must be aware that artifacts can occur and may lead to false-positive and false-negative results. Diagnostic accuracy is impaired when image quality is reduced and image quality, in turn, is influenced by many factors such as the patient’s heart rate, body weight, ability to cooperate, and extent of coronary calcification. Therefore, the clinical utility of coronary CT angiography significantly depends on the specific clinical situation and patient under investigation. The specific advantages and disadvantages of coronary CT angiography must be carefully considered before using this method in the workup of a patient with known or suspected coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbara S, Arbab-Zadeh A, Callister TQ, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3:190–204.

    Article  PubMed  Google Scholar 

  2. Achenbach S, Ropers U, Kuettner A, et al. Randomized comparison of 64-slice single- and dual-source computed tomography for the detection of coronary artery disease. J Am Coll Cardiol Img. 2008;1:177–186.

    Google Scholar 

  3. Ferencik M, Ropers D, Abbara S, et al. Diagnostic accuracy of image postprocessing methods for the detection of coronary artery stenoses by using multidetector CT. Radiology. 2007;243:696–702.

    Article  PubMed  Google Scholar 

  4. Cheng V, Gutstein A, Wolak S, et al. Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging. 2008;1:472–474.

    Article  Google Scholar 

  5. Raff GL, Abidov A, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3:122–136.

    Article  PubMed  Google Scholar 

  6. Hoffmann U, Moselewski F, Cury RC, et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation. 2004;110:2638–2643.

    Article  PubMed  Google Scholar 

  7. Lim MCL, Wong TW, Yaneza LO, De Larrazabal C, Lau JK, Boey HK. Non-invasive detection of significant coronary artery disease with multi-section computed tomography angiography in patients with suspected coronary artery disease. Clin Radiol. 2006;61:174–180.

    Article  PubMed  CAS  Google Scholar 

  8. Halon DA, Gaspar T, Adawi S, et al. Uses and limitations of 40 slice multi-detector row spiral computed tomography for diagnosing coronary lesions in unselected patients referred for routine invasive coronary angiography. Cardiology. 2007;108:200–209.

    Article  PubMed  Google Scholar 

  9. Watkins MW, Hesse B, Green CE, et al. Detection of coronary artery stenosis using 40-channel computed tomography with multisegment reconstruction. Am J Cardiol. 2007;99:175–181.

    Article  PubMed  Google Scholar 

  10. Grosse C, Globits S, Hergan K. Forty-slice spiral computed tomography of the coronary arteries: assessment of image quality and diagnostic accuracy in a non-selected patient population. Acta Radiol. 2007;48:36–44.

    Article  PubMed  CAS  Google Scholar 

  11. Ropers D, Rixe J, Anders K, et al. Usefulness of multidetector row computed tomography with 64 x 0.6 mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006;97:343–348.

    Article  PubMed  Google Scholar 

  12. Fine JJ, Hopkins CB, Ruff N, Newton FC. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am J Cardiol. 2006;97:173–174.

    Article  PubMed  Google Scholar 

  13. Nikolaou K, Knez A, Rist C, et al. Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR. 2006;187:111–117.

    Article  PubMed  Google Scholar 

  14. Schlosser T, Mohrs OK, Magedanz A, et al. Noninvasive coronary angiography using 64-detector-row computed tomography in patients with a low to moderate pretest probability of significant coronary artery disease. Acta Radiol. 2007;48:300–307.

    Article  PubMed  CAS  Google Scholar 

  15. Mühlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH. Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol. 2007;17:603–609.

    Article  PubMed  Google Scholar 

  16. Meijboom WB, Mollet NR, Van Mieghem CA, et al. 64-slice computed tomography coronary angiography in patients with non-ST elevation acute coronary syndrome. Heart. 2007;93:1386–1392.

    Article  PubMed  Google Scholar 

  17. Herzog C, Zwerner PL, Doll JR, et al. Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology. 2007;244:112–120.

    Article  PubMed  Google Scholar 

  18. Ehara M, Surmely JF, Kawai M, et al. Diagnostic accuracy of 64-slice computed tomography for detecting angiographically significant coronary artery stenosis in an unselected consecutive patient population. Circ J. 2007;70:564–571.

    Article  Google Scholar 

  19. Hausleiter J, Meyer T, Hadamitzky M, et al. Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the coronary angiography by computed tomography with the use of a submillimeter resolution (CACTUS) trial. Eur Heart J. 2007;28:3034–3041.

    Article  PubMed  Google Scholar 

  20. Shabestari AA, Abdi S, Akhlaghpoor S, et al. Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol. 2007;99:1656–1661.

    Article  PubMed  Google Scholar 

  21. Scheffel H, Alkadhi H, Plass A, et al. Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol. 2006;16:2739–2747.

    Article  PubMed  Google Scholar 

  22. Heuschmid M, Burgstahler C, Reimann A, et al. Usefulness of noninvasive cardiac imaging using dual-source computed tomography in an unselected population with high prevalence of coronary artery disease. Am J Cardiol. 2007;100:587–592.

    Article  PubMed  Google Scholar 

  23. Ropers U, Ropers D, Pflederer T, et al. Influence of heart rate on the diagnostic accuracy of dual-source tomography computed angiography. J Am Coll Cardiol. 2007;50:2393–2398.

    Article  PubMed  Google Scholar 

  24. Leber AW, Johnson T, Becker A, et al. Diagnostic accuracy of dual-source multi-slice CT-coronary angiography in patients with an intermediate pretest likelihood for coronary artery disease. Eur Heart J. 2007;28:2354–2360.

    Article  PubMed  Google Scholar 

  25. Weustink AC, Meijboom WB, Mollet NR, et al. Reliable high-speed coronary computed tomography in symptomatic patients. J Am Coll Cardiol. 2007;50:786–794.

    Article  PubMed  Google Scholar 

  26. Alkadhi H, Scheffel H, Desbiolles L, et al. Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J. 2008;29:766–776.

    Article  PubMed  Google Scholar 

  27. Gosthine S, Caussin C, Daoud B, et al. Non-invasive detection of coronary artery disease in patients with left bundle branch block using 64-slice computed tomography. J Am Coll Cardiol. 2006;48:1929–1934.

    Article  Google Scholar 

  28. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–1732.

    Article  PubMed  Google Scholar 

  29. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244:419–428.

    Article  PubMed  Google Scholar 

  30. Pugliese F, Mollet NR, Hunink MG, et al. Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology. 2008;246:384–393.

    Article  PubMed  Google Scholar 

  31. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R. et al Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244:419–428.

    Article  PubMed  Google Scholar 

  32. Hamon M, Lepage O, Malagutti P, et al. Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography – meta-analysis. Radiology. 2007;245:720–731.

    Article  PubMed  Google Scholar 

  33. Abdulla J, Abildstrom SZ, Gotzsche O, Christensen E, Kober L, Torp-Pedersen C. 64-multislice detection computed tomography coronary angiography as a potential alternative to conventional coronary angiography: a systematic review and meta-analysis. Eur Heart J. 2007;28:3042–3050.

    Article  PubMed  Google Scholar 

  34. Gopalakrishnan P, Wolson GT, Tak K. Accuracy of multislice computed tomography coronary angiography: a pooled estimate. Cardiol Rev. 2008;16:189–196.

    Article  PubMed  Google Scholar 

  35. Mowatt G, Cook JA, Hillis GS, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: systematic review and meta-analysis. Heart. 2008;94:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  36. Meijboom WB, van Mieghem CA, Mollet NR, et al. 64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease. J Am Coll Cardiol. 2007;50:1469–1475.

    Article  PubMed  Google Scholar 

  37. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–2336.

    Article  PubMed  CAS  Google Scholar 

  38. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–2144.

    Article  PubMed  Google Scholar 

  39. Danciu SC, Herrera CJ, Stecy PJ, Carell E, Saltiel F, Hines JL. Usefulness of multislice computed tomographic coronary angiography to identify patients with abnormal myocardial perfusion stress in whom diagnostic catheterization may be safely avoided. Am J Cardiol. 2007;100:1605–1608.

    Article  PubMed  Google Scholar 

  40. Gilard M, Le Gal G, Cornily JC, et al. Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomography findings. A prospective management outcome study. Arch Intern Med. 2007;165:1686–1689.

    Article  Google Scholar 

  41. Lesser JR, Flygenring B, Knickelbine T, et al. Clinical utility of coronary CT angiography: coronary stenosis detection and prognosis in ambulatory patients. Cath Cardiovasc Interv. 2007;69:64–72.

    Article  Google Scholar 

  42. Hadamitzky M, Freissmuth B, Meyer T, et al. Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging. 2009;2:404–11.

    Article  PubMed  Google Scholar 

  43. Ostrom MP, Gopal A, Ahmadi N, et al. Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol. 2008;52:1335–1343.

    Article  PubMed  Google Scholar 

  44. Gallagher AA, MJ CKM, Mehta LS, Wegner JH, Raff GH. Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J Nucl Cardiol. 2009;16(5):701–13.

    Article  PubMed  Google Scholar 

  45. Min JK, Kang N, Shaw LJ, et al. Costs and clinical outcomes after coronary multidetector CT angiography in patients without known coronary artery disease: comparison to myocardial perfusion SPECT. Radiology. 2008;249:62–70.

    Article  PubMed  Google Scholar 

  46. Hoffmann U, Nagurney JT, Moselewski F, et al. Coronary multidetector computed tomography in the assessment of patients with acute chest pain. Circulation. 2006;114:2251–2260.

    Article  PubMed  Google Scholar 

  47. Gallagher MJ, Ross MA, Raff GL, Goldstein JA, O’Neill WW, O’Neil B. The diagnostic accuracy of 64-slice computed tomography coronary angiography compared with stress nuclear imaging in emergency department low-risk chest pain patients. Ann Emerg Med. 2007;49:125–136.

    Article  PubMed  Google Scholar 

  48. Goldstein JA, Gallagher MJ, O’Neill WW, Ross MA, O’Neil BJ, Raff GL. A randomized controlled trial of multi-slice coronary computed tomography for evaluation of acute chest pain. J Am Coll Cardiol. 2007;49:863–871.

    Article  PubMed  Google Scholar 

  49. Coles DR, Wilde P, Oberhoff M, Rogers CA, Karsch KR, Baumbach A. Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging. 2007;23:603–614.

    Article  PubMed  Google Scholar 

  50. Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: The ROMICAT (rule out myocardial infarction using computer assisted tomography) trial. J Am Coll Cardiol. 2009;53:1642–1650.

    Article  PubMed  Google Scholar 

  51. Hollander JE, Chang AM, Shofer FS, et al. One-year outcomes following coronary computerized tomographic angiography for evaluation of emergency department patients with potential acute coronary syndrome. Acad Emerg Med. 2009;16(8):693–698.

    Article  PubMed  Google Scholar 

  52. Rubinshtein R, Halon DA, Gaspar T, et al. Usefulness of 64-slice cardiac computed tomographic angiography for diagnosing acute coronary syndromes and predicting clinical outcome in emergency department patients with chest pain of uncertain origin. Circulation. 2007;115:1762–1768.

    Article  PubMed  Google Scholar 

  53. Schuijf JD, Wijns W, Jukema JW, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myocardial perfusion imaging. J Am Coll Cardiol. 2006;48:2508–2514.

    Article  PubMed  Google Scholar 

  54. Hacker M, Jakobs T, Hack N, et al. Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin. 2007;46:29–35.

    PubMed  CAS  Google Scholar 

  55. Hacker M, Jakobs T, Hack N, et al. Sixty-four slice spiral CT angiography does not predict the functional relevance of coronary artery stenoses in patients with stable angina. Eur J Nucl Med Mol Imaging. 2007;34:4–10.

    Article  PubMed  Google Scholar 

  56. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: Noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med. 2006;47:1107–1118.

    PubMed  Google Scholar 

  57. Pflederer T, Ludwig J, Ropers D, Daniel WG, Achenbach S. Measurement of coronary artery bifurcation angles by multidetector computed tomography. Invest Radiol. 2006;41:793–798.

    Article  PubMed  Google Scholar 

  58. Van Mieghem CA, Thury A, Meijboom WB, et al. Detection and characterization of coronary bifurcation lesions with 64-slice computed tomography coronary angiography. Eur Heart J. 2007;28:1968–1976.

    Article  PubMed  Google Scholar 

  59. Mollet NR, Hoye A, Lemos PA, et al. Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol. 2005;95:240–243.

    Article  PubMed  Google Scholar 

  60. Springer I. Dewey M. Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: A systematic review. Eur J Radiol; 2008 [Epub ahead of print.].

    Google Scholar 

  61. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109:14–17.

    Article  PubMed  Google Scholar 

  62. Moselewski F, Ropers D, Pohle K, et al. Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound. Am J Cardiol. 2004;94:1294–1297.

    Article  PubMed  Google Scholar 

  63. Sun J, Zhang Z, Lu B, et al. Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. AJR Am J Roentgenol. 2008;190:748–754.

    Article  PubMed  Google Scholar 

  64. Otsuka M, Bruining N, Van Pelt NC, et al. Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest Radiol. 2008;43:314–321.

    Article  PubMed  Google Scholar 

  65. Petranovic M, Soni A, Bezzera H, et al. Assessment of nonstenotic coronary lesions by 64-slice multidetector computed tomography in comparison to intravascular ultrasound: evaluation of nonculprit coronary lesions. J Cardiovasc Comput Tomogr. 2009;3:24–31.

    Article  PubMed  Google Scholar 

  66. Achenbach S, Ropers D, Hoffmann U, et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol. 2004;43:842–847.

    Article  PubMed  Google Scholar 

  67. Leber AW, Becker A, Knez A, et al. Accuracy of 64-slice computed tomography to classify and quantify plaque volumes in the proximal coronary system: a comparative study using intravascular ultrasound. J Am Coll Cardiol. 2006;47:672–677.

    Article  PubMed  Google Scholar 

  68. Pflederer T, Schmid M, Ropers D, et al. Interobserver variability of 64-slice computed tomography for the quantification of non-calcified coronary atherosclerotic plaque. Röfo. 2007;179:953–957.

    PubMed  CAS  Google Scholar 

  69. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–1170.

    Article  PubMed  Google Scholar 

  70. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  71. Choi EK, Choi SI, Rivera JJ, et al. Coronary computed tomography angiography as a screening tool for the detection of occult coronary artery disease in asymptomatic individuals. J Am Coll Cardiol. 2008;52:357–365.

    Article  PubMed  Google Scholar 

  72. Ropers D, Moshage W, Daniel WG, et al. Visualization of coronary artery anomalies and their course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol. 2001;87:193–197.

    Article  PubMed  CAS  Google Scholar 

  73. Deibler AR, Kuzo RS, Vohringer M, et al. Imaging of congenital coronary anomalies with multislice computed tomography. Mayo Clin Proc. 2004;79:1017–1023.

    Article  PubMed  Google Scholar 

  74. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235:812–818.

    Article  PubMed  Google Scholar 

  75. Schmid M, Achenbach S, Ludwig J, et al. Ropers D Visualization of coronary artery anomalies by contrast-enhanced multi-detector row spiral computed tomography. Int J Cardiol. 2006;111:430–435.

    Article  PubMed  Google Scholar 

  76. Kim SY, Seo JB, Do KJ, et al. Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiographics. 2006;26:317–333.

    Article  PubMed  Google Scholar 

  77. Duran C, Kantarci M, Durur Subais I, et al. Remarkable anatomic anomalies of coronary arteries and their clinical importance: a multidetector computed tomography angiographic study. J Comput Assist Tomogr. 2006;30:939–948.

    Article  PubMed  Google Scholar 

  78. Kini S, Bis KG, Weaver L. Normal and variant coronary arterial and venous anatomy on high-resolution CT angiography. AJR M J Roentgenol. 2007;188:1665–1674.

    Article  Google Scholar 

  79. Dodd JD, Ferencik M, Liberthson RR, et al. Congenital anomalies of coronary artery origin in adults: 64-MDCT appearance. AJR Am J Roentgenol. 2007;188:W138–W146.

    Article  PubMed  Google Scholar 

  80. Bluemke DA, Achenbach S, Budoff M, et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American Heart Association Committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008;118:586–606.

    Article  PubMed  Google Scholar 

  81. Hendel RC, Patel MR, Kramer CM, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48:1475–1497.

    Article  PubMed  Google Scholar 

  82. Taylor AJ, Cequeira M, Hodgson J, Mark D, Min J, O’Gara P, Pearson S, Rubin G. ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 App­ropriate Use Criteria for Cardiac Computed Tomography. J Am Coll Cardiol. 2010;55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Achenbach MD, FACC, FESC, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Achenbach, S. (2010). Coronary CT Angiography: Native Vessels. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics