Skip to main content

Natural History and Impact of Interventions on Coronary Calcium

  • Chapter
  • First Online:
  • 1856 Accesses

Abstract

Coronary artery calcium (CAC) has long been known to be associated with atherosclerotic plaque development. Similarly, aortic valve degeneration and calcification appear to follow a pathophysiologic process very similar to atherosclerosis. Noninvasive imaging technologies such as electron beam tomography (EBT) and multi-detector computer tomography (MDCT) scanners allow the accurate detection and quantification of cardiovascular calcification, offering an opportunity to monitor progression of disease. It has recently become apparent that continued progression of CAC is associated with an increased risk of myocardial infarction and cardiac death, suggesting that there might be some utility for sequential imaging. Therefore, researchers have investigated the utilization of cardiac CT imaging to follow the progression of cardiovascular calcification in a variety of clinical settings. In this chapter, a review of the studies published to date on the use of CT technology to follow progression of CAC is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Strong JP, Malcom GT, McMahan A, et al. Prevalence and extent of atherosclerosis in adolescents and young adults. The Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA. 1999;281: 727–735.

    Article  PubMed  CAS  Google Scholar 

  2. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenic protein expression in human atherosclerotic lesions. J Clin Invest. 1993;91:1800–1809.

    Article  PubMed  CAS  Google Scholar 

  3. Fitzpatrick LA, Severson A, Edwards WD, Ingram RT. Diffuse calcification in human coronary arteries: association of osteopontin with atherosclerosis. J Clin Invest. 1994;94:1597–1604.

    Article  PubMed  CAS  Google Scholar 

  4. Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL. High Expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest. 1994;93:2393–2402.

    Article  PubMed  CAS  Google Scholar 

  5. Proudfoot D, Davies JD, Skepper JN, Weissberg PL, Shanahan CM. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation. 2002;106:3044–3050.

    Article  PubMed  CAS  Google Scholar 

  6. Bini A, Mann KG, Kudryk BJ, Schen FJ. Noncollagenous bone matrix proteins, calcification and thrombosis in carotid artery atherosclerosis. Arterioscl Thromb Vasc Biol. 1999;19:1852–1861.

    Article  PubMed  CAS  Google Scholar 

  7. Stary HC. Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol. 2000;89(suppl 2):28–35.

    Article  PubMed  Google Scholar 

  8. Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol. 1998;31:684–91.

    Article  PubMed  CAS  Google Scholar 

  9. Daoud AS, Jarmolych J, Augustyn JM, et al. Sequential morphologic studies of regression of advanced atherosclerosis. Arch Pathol. 1981; 105:233–239.

    CAS  Google Scholar 

  10. Clarkson TB, Bond MG, Bullock BC, et al. A study of atherosclerosis regression in Macaca mulatta. IV. Changes in coronary arteries from animals with atherosclerosis induced for 19 months and then regressed for 24 months or 48 months at plasma cholesterol concentrations of 300 or 200 mg/dl. Exp Mol Pathol. 1981;34:345–368.

    Article  PubMed  CAS  Google Scholar 

  11. Agatston AS, Janowitz WR, Hildner JR, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography scanning. J Am Coll Cardiol. 1990;15: 827–832.

    Article  PubMed  CAS  Google Scholar 

  12. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segements using non-decalcifying methodology. Electron beam computed tomography and coronary artery disease: scanning for coronary artery calcification. J Am Coll Cardiology. 1998;31:126–133.

    Article  CAS  Google Scholar 

  13. Callister TQ, Cooil B, Raya S, Lippolis NJ, Russo DJ, Raggi P. Coronary artery disease: improved reproducibility of calcium scoring with electron-beam CT volumetric method. Radiology. 1998;208:807–814.

    PubMed  CAS  Google Scholar 

  14. Rumberger JA, Kaufman L. A rosetta stone for coronary calcium risk stratification: agatston, volume, and mass scores in 11, 490 individuals. AJR Am J Roentgenol. 2003;181:743–748.

    PubMed  Google Scholar 

  15. McCollough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology. 2007;243:527–538.

    Article  PubMed  Google Scholar 

  16. Jukema JW, Bruschke AV, van Boven AJ, et al. he Regression Growth Evaluation Statin Study (REGRESS). Circulation. 1995;91:2528–2540.

    Article  PubMed  CAS  Google Scholar 

  17. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323:1289–1298.

    Article  PubMed  CAS  Google Scholar 

  18. Callister TQ, Raggi P, Cooil B. Effects of HMG-CoA reductase inhibitors on coronary artery disease. N Engl J Med. 1998;339:1972–1977.

    Article  PubMed  CAS  Google Scholar 

  19. Budoff MJ, Lane KL, Bakhsheshi H, et al. Rates of progression of coronary calcium by electron beam tomography. Am J Cardiol. 2000; 86:8–11.

    Article  PubMed  CAS  Google Scholar 

  20. Achenbach S, Dieter R, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification. Circulation. 2002;106:1077–1082.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffmann U, Derfler K, Haas M, Stadler A, Brady TJ, Kostner K. Effects of combined low density lipoprotein apheresis and aggressive statin therapy on coronary calcified plaque as measured by computed tomography. Am J Cardiol. 2003;91:461–464.

    Article  PubMed  CAS  Google Scholar 

  22. Taylor AJ, Kent SM, Flaherty PJ, Coyle LC, Markwood TT, Vernalis MN. ARBITER: arterial biology for the investigation of the treatment effects of reducing cholesterol: a randomized trial comparing the effects of atorvastatin and pravastatin on carotid intima medial thickness. Circulation. 2002;106:2055–2060.

    Article  PubMed  CAS  Google Scholar 

  23. Levine GN, Keaney JF Jr, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Engl J Med. 1995;332:512–521.

    Article  PubMed  CAS  Google Scholar 

  24. Hsia J, Klouj A, Prasad A, Burt J, Adams-Campbell LL, Howard BV. Progression of coronary calcification in healthy postmenopausal women. BMC Cardiovasc Disord. 2004;4:21.

    Article  PubMed  Google Scholar 

  25. Hecht HS, Harman SM. Comparison of the effects of atorvastatin versus simvastatin on subclinical atherosclerosis in primary prevention as determined by electron beam tomography. Am J Cardiol. 2003; 91:42–45.

    Article  PubMed  CAS  Google Scholar 

  26. Hecht HS, Harman SM. Relation of aggressiveness of lipid-lowering treatment to changes in calcified plaque burden by electron beam tomography. Am J Cardiol. 2003;92:334–336.

    Article  PubMed  Google Scholar 

  27. Wong ND, Kawakubo M, LaBree L, Azen SP, Xiang M, Detrano R. Relation of coronary calcium progression and control of lipids according to the National Cholesterol Education Program guidelines. Am J Cardiol. 2004;94:431–436.

    Article  PubMed  CAS  Google Scholar 

  28. Raggi P, Davidson M, Callister TQ, et al. Aggressive versus moderate lipid-lowering therapy in hypercholesterolemic post-menopausal women: beyond Endorsed Lipid Lowering With EBT Scanning (BELLES). Circulation. 2005;112(4):563–571.

    Article  PubMed  CAS  Google Scholar 

  29. Arad Y, Spadaro LA, Roth M, Newstein D, Guerci A. Treatment of asymptomatic adults with elevated calcium scores with atorvastatin, vitamin C and vitamin E. The St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005;46:166–172.

    Article  PubMed  CAS  Google Scholar 

  30. Schmermund A, Achenbach S, Budde T, et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2006; 113: 427–437.

    Article  PubMed  CAS  Google Scholar 

  31. Snell-Bergeon JK, Hokanson JE, Jensen L, et al. Progression of coronary artery calcification in type 1 diabetes: the importance of glycemic control. Diabetes Care. 2003;26:2923–2928.

    Article  PubMed  Google Scholar 

  32. Manson JE, Allison MA, Rossouw JE, et al. Estrogen therapy and coronary-artery calcification. N Engl J Med. 2007;356:2591–2602.

    Article  PubMed  CAS  Google Scholar 

  33. Rath M, Niedzwiecki A. Nutritional supplement program halts progression of early coronary atherosclerosis documented by ultrafast computed tomography. J Appl Nutr. 1996;48:67–78.

    Google Scholar 

  34. Budoff MJ, Takasu J, Flores FR, et al. Inhibiting progression of coronary calcification using aged garlic extract in patients receiving statin therapy: a preliminary study. Prev Med. 2004;39:985–991.

    Article  PubMed  Google Scholar 

  35. Maniscalco BS, Taylor KA. Calcification in coronary artery disease can be reversed by EDTA-tetracycline long-term chemotherapy. Pathophysiology. 2004;11:95–101.

    Article  PubMed  CAS  Google Scholar 

  36. US Renal Data System. USRDS 2004 Annual Data Report: atlas of end-stage renal disease in the United States. National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD: National Institutes of Health; 2004.

    Google Scholar 

  37. Longenecker JC, Coresh J, Powe NR, et al. Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study. J Am Soc Nephrol. 2002; 13: 1918–1927.

    Article  PubMed  Google Scholar 

  38. Block G, Hulbert-Shearon T, Levin N, et al. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–617.

    Article  PubMed  CAS  Google Scholar 

  39. Guerin AP, London GM, Marchais SJ, et al. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant. 2000;15:1014–1021.

    Article  PubMed  CAS  Google Scholar 

  40. Blacher J, Guerin AP, Pannier B, et al. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension. 2001;38:938–942.

    Article  PubMed  CAS  Google Scholar 

  41. Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol. 2002;39:695–701.

    Article  PubMed  Google Scholar 

  42. London GM, Guerin AP, Marchais SJ, et al. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18:1731–1740.

    Article  PubMed  Google Scholar 

  43. London GM. Cardiovascular calcifications in uremic patients: clinical impact on cardiovascular function. J Am Soc Nephrol. 2003; 14:S305–309.

    Article  PubMed  Google Scholar 

  44. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15:2208–2218.

    Article  PubMed  CAS  Google Scholar 

  45. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–1483.

    Article  PubMed  CAS  Google Scholar 

  46. Chertow GM, Burke SK, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62:245–252.

    Article  PubMed  CAS  Google Scholar 

  47. Raggi P, James G, Burke S, et al. Paradoxical decrease in vertebral bone density with calcium-based phosphate binders in hemodialysis. J Bone Miner Res. 2005;20:762–772.

    Google Scholar 

  48. Barengolts EI, Berman M, Kukreja SC, Kouznetsova T, Lin C, Chomka EV. Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int. 1998;62:209–213.

    Article  PubMed  CAS  Google Scholar 

  49. Sirola J, Sirola J, Honkanen R, et al. Relation of statin use and bone loss: a prospective population-based cohort study in early postmenopausal women. Osteoporos Int. 2002;13:537–541.

    Article  PubMed  CAS  Google Scholar 

  50. Block GA, Spiegel DM, Ehrlich J, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.

    Article  PubMed  CAS  Google Scholar 

  51. Block GA, Raggi P, Bellasi A, Kooienga L, Spiegel DM. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 2007;7:438–41.

    Article  Google Scholar 

  52. Qunibi W, Moustafa M, Muenz LR, et al. A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study. Am J Kidney Dis. 2008;5:952–65.

    Article  Google Scholar 

  53. Raggi P, Cooil B, Shaw LJ, et al. Progression of coronary calcification on serial electron beam tomography scanning is greater in patients with future myocardial infarction. Am J Cardiol. 2003;92:827–829.

    Article  PubMed  Google Scholar 

  54. Raggi P, Callister T, Budoff M, Shaw L. Progression of coronary artery calcium and risk of first myocardial infarction in patients receiving cholesterol-lowering therapy. Arterioscler Thromb Vasc Biol. 2004;24:1272–7.

    Article  PubMed  CAS  Google Scholar 

  55. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary risk factors, and atherosclerotic cardiovascular disease events. The St. Francis Heart Study. J Am Coll Cardiol. 2005;46:158–165.

    Article  PubMed  CAS  Google Scholar 

  56. Oudkerk M, Stillman AE, Halliburton SS, et al. Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int J Cardiovasc Imaging. 2008; 24(6): 645–71.

    Article  PubMed  Google Scholar 

  57. Greenland P, Bonow RO, Brundage BH, et al.; American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography); Society of Atherosclerosis Imaging and Prevention; Society of Cardiovascular Computed Tomography. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography). J Am Coll Cardiol. 2007;49:378–402.

    Google Scholar 

  58. Kingsley LA, Cuervo-Rojas J, Munoz A, et al. Subclinical coronary atherosclerosis, HIV infection and antiretroviral therapy: multicenter AIDS cohort study. AIDS. 2008;22:1589–99.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Raggi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Raggi, P. (2010). Natural History and Impact of Interventions on Coronary Calcium. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics