Skip to main content

CCTA: Cardiothoracic Surgery Applications

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Cardiovascular computed tomographic angiography (CCTA) has great relevance for cardiothoracic surgical procedures, providing information essential to decisions regarding proceeding with surgical intervention, presurgical planning, as well as assessment for surgical efficacy and complications. In addition to visualization cardiovascular anatomy, CCTA provides a 3-D view of the relationships between thoracic skeletal, vascular, visceral, and cardiac structures (Figure 24.1). The spectrum of approaches to cardiovascular surgery has expanded to minimally invasively procedures [1, 2]. CCTA 3-D full field of view images with use of editing software enables visualization of multidimensional planes important to achieving access to target structures while avoiding important vascular and visceral thoracic structures for planning of these minimally invasive procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nifong LW, Chitwood WR, Pappas PS, et al. Robotic mitral valve surgery: a United States multicenter trial. J Thorac Cardiovasc Surg. 2005;129(6):1395–1404.

    Article  PubMed  Google Scholar 

  2. Kim BS, Soltesz EG, Cohn LH. Minimally invasive approaches to aortic valve surgery: Brigham experience. Semin Thorac Cardiovasc Surg. 2006;18(2):148–153.

    Article  PubMed  Google Scholar 

  3. Roselli EE, Pettersson GB, Blackstone EH, et al. Adverse events during reoperative cardiac surgery: frequency, characterization, and rescue. J Thorac Cardiovasc Surg. 2008;135(2):316–323.

    Google Scholar 

  4. Sabik JF 3rd, Blackstone EH, Houghtaling PL, Walts PA, Lytle BW. Is reoperation still a risk factor in coronary artery bypass surgery? Ann Thorac Surg. 2005;80(5):1719–1727.

    Article  PubMed  Google Scholar 

  5. Kamdar AR, Meadows TA, Roselli EE, et al. Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg. 2008;85(4):1239–1245.

    Article  PubMed  Google Scholar 

  6. Gasparovic H, Rybicki FJ, Millstine J, et al. Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J Cardiothorac Surg. 2005;28(2):244–249.

    Article  PubMed  Google Scholar 

  7. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453.

    Google Scholar 

  8. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105(2):162–167.

    Article  PubMed  Google Scholar 

  9. Kuhl HP, Beek AM, van der Weerdt AP, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2003;41(8):1341–1348.

    Article  PubMed  Google Scholar 

  10. Selvanayagam JB, Kardos A, Francis JM, et al. Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation. 2004;110(12):1535–1541.

    Article  PubMed  Google Scholar 

  11. Lardo AC, Cordeiro MA, Silva C, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113(3):394–404.

    Article  PubMed  Google Scholar 

  12. Chiou KR, Liu CP, Peng NJ, et al. Identification and viability assessment of infarcted myocardium with late enhancement multidetector computed tomography: comparison with thallium single photon emission computed tomography and echocardiography. Am Heart J. 2008;155(4):738–745.

    Article  PubMed  Google Scholar 

  13. Mahnken AH, Koos R, Katoh M, et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005;45(12):2042–2047.

    Article  PubMed  Google Scholar 

  14. Sato A, Hiroe M, Nozato T, et al. Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction. Eur Heart J. 2008;29(4):490–498.

    Article  PubMed  Google Scholar 

  15. Habis M, Capderou A, Ghostine S, et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol. 2007;49(11):1178–1185.

    Article  PubMed  Google Scholar 

  16. Gilard M, Cornily JC, Pennec PY, et al. Accuracy of multislice computed tomography in the preoperative assessment of coronary disease in patients with aortic valve stenosis. J Am Coll Cardiol. 2006;47(10):2020–2024.

    Article  PubMed  Google Scholar 

  17. Meijboom WB, Mollet NR, Van Mieghem CA, et al. Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol. 2006;48(8):1658–1665.

    Article  PubMed  Google Scholar 

  18. Scheffel H, Leschka S, Plass A, et al. Accuracy of 64-slice computed tomography for the preoperative detection of coronary artery disease in patients with chronic aortic regurgitation. Am J Cardiol. 2007;100(4):701–706.

    Article  PubMed  Google Scholar 

  19. Tanaka H, Shimada K, Yoshida K, Jissho S, Yoshikawa J, Yoshiyama M. The simultaneous assessment of aortic valve area and coronary artery stenosis using 16-slice multidetector-row computed tomography in patients with aortic stenosis comparison with echocardiography. Circ J. 2007;71(10):1593–1598.

    Article  PubMed  Google Scholar 

  20. Lembcke A, Kivelitz DE, Borges AC, et al. Quantification of aortic valve stenosis: head-to-head comparison of 64-slice spiral computed tomography with transesophageal and transthoracic echocardiography and cardiac catheterization. Invest Radiol. 2009;44(1):7–14.

    Article  PubMed  Google Scholar 

  21. Laissy JP, Messika-Zeitoun D, Serfaty JM, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart. 2007; 93(9):1121–1125.

    Article  PubMed  Google Scholar 

  22. Habis M, Daoud B, Roger VL, et al. Comparison of 64-slice computed tomography planimetry and Doppler echocardiography in the assessment of aortic valve stenosis. J Heart Valve Dis. 2007;16(3):216–224.

    PubMed  Google Scholar 

  23. Willmann JK, Weishaupt D, Lachat M, et al. Electrocardiographically gated multi-detector row CT for assessment of valvular morphology and calcification in aortic stenosis. Radiology. 2002;225(1):120–128.

    Article  PubMed  Google Scholar 

  24. Alkadhi H, Wildermuth S, Bettex DA, et al. Mitral regurgitation: quantification with 16-detector row CT–initial experience. Radiology. 2006;238(2):454–463.

    Article  PubMed  Google Scholar 

  25. Webb JG, Pasupati S, Humphries K, et al. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation. 2007;116(7):755–763.

    Article  PubMed  Google Scholar 

  26. Tops LF, Wood DA, Delgado V, et al. Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging. 2008;1(3):321–330.

    Article  PubMed  Google Scholar 

  27. Akhtar M, Tuzcu EM, Kapadia SR, et al. Aortic root morphology in patients undergoing percutaneous aortic valve replacement: evidence of aortic root remodeling. J Thorac Cardiovasc Surg. 2009;137(4):950–956.

    Article  PubMed  Google Scholar 

  28. Wood DA, Tops LF, Mayo JR, et al. Role of multislice computed tomography in transcatheter aortic valve replacement. Am J Cardiol. 2009;103(9):1295–1301.

    Article  PubMed  Google Scholar 

  29. Kurra V, Schoenhagen P, Roselli EE, et al. Prevalence of significant peripheral artery disease in patients evaluated for percutaneous aortic valve insertion: preprocedural assessment with multidetector computed tomography. J Thorac Cardiovasc Surg. 2009; 137(5):1258–1264.

    Article  PubMed  Google Scholar 

  30. Delgado V, Tops LF, Schuijf JD, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. JACC Cardiovasc Imaging. 2009;2(5):556–565.

    Article  PubMed  Google Scholar 

  31. Mao S, Shinbane JS, Girsky MJ, et al. Coronary venous imaging with electron beam computed tomographic angiography: three-dimensional mapping and relationship with coronary arteries. Am Heart J. 2005;150(2):315–322.

    Article  PubMed  Google Scholar 

  32. Choure AJ, Garcia MJ, Hesse B, et al. In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol. 2006;48(10):1938–1945.

    Article  PubMed  Google Scholar 

  33. Feuchtner GM, Stolzmann P, Dichtl W, et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol. 2009;53(5):436–444.

    Article  PubMed  Google Scholar 

  34. Hayter RG, Rhea JT, Small A, Tafazoli FS, Novelline RA. Suspected aortic dissection and other aortic disorders: multi-detector row CT in 373 cases in the emergency setting. Radiology. 2006;238(3):841–852.

    Article  PubMed  Google Scholar 

  35. Yoshida S, Akiba H, Tamakawa M, et al. Thoracic involvement of type A aortic dissection and intramural hematoma: diagnostic accuracy–comparison of emergency helical CT and surgical findings. Radiology. 2003;228(2):430–435.

    Article  PubMed  Google Scholar 

  36. Yoshikai M, Ikeda K, Itoh M, Noguchi R. Detection of coronary artery disease in acute aortic dissection: the efficacy of 64-row multidetector computed tomography. J Card Surg. 2008;23(3):277–279.

    Article  PubMed  Google Scholar 

  37. Smayra T, Noun R, Tohme-Noun C. Left anterior descending coronary artery dissection after blunt chest trauma: assessment by multi-detector row computed tomography. J Thorac Cardiovasc Surg. 2007;133(3):811–812.

    Article  PubMed  Google Scholar 

  38. Sato Y, Matsumoto N, Komatsu S, et al. Coronary artery dissection after blunt chest trauma: depiction at multidetector-row computed tomography. Int J Cardiol. 2007;118(1):108–110.

    Article  PubMed  Google Scholar 

  39. Scaglione M, Pinto A, Pinto F, Romano L, Ragozzino A, Grassi R. Role of contrast-enhanced helical CT in the evaluation of acute thoracic aortic injuries after blunt chest trauma. Eur Radiol. 2001;11(12):2444–2448.

    Article  PubMed  CAS  Google Scholar 

  40. Higashiura W, Sakaguchi S, Tabayashi N, Taniguchi S, Kichikawa K. Impact of 3-dimensional-computed tomography workstation for precise planning of endovascular aneurysm repair. Circ J. 2008; 72(12):2028–2034.

    Article  PubMed  Google Scholar 

  41. Lin MP, Chang SC, Wu RH, Chou CK, Tzeng WS. A comparison of computed tomography, magnetic resonance imaging, and digital subtraction angiography findings in the diagnosis of infected aortic aneurysm. J Comput Assist Tomogr. 2008;32(4):616–620.

    Article  PubMed  Google Scholar 

  42. Suh SY, Rha SW, Kim JW, et al. The usefulness of three-dimensional multidetector computed tomography to delineate pericardial calcification in constrictive pericarditis. Int J Cardiol. 2006;113(3):414–416.

    Article  PubMed  Google Scholar 

  43. von Erffa J, Daniel WG, Achenbach S. Three-dimensional visualization of severe pericardial calcification in constrictive pericarditis using multidetector-row computed tomography. Eur Heart J. 2006;27(3):275.

    Article  Google Scholar 

  44. Kameda Y, Funabashi N, Kawakubo M, et al. Heart in an eggshell–eggshell appearance calcified constrictive pericarditis demonstrated by three-dimensional images of multislice computed tomography. Int J Cardiol. 2007;120(2):269–272.

    Article  PubMed  Google Scholar 

  45. Rifkin RD, Mernoff DB. Noninvasive evaluation of pericardial effusion composition by computed tomography. Am Heart J. 2005; 149(6):1120–1127.

    Article  PubMed  Google Scholar 

  46. Cook SC, Dyke PC 2nd, Raman SV. Management of adults with congenital heart disease with cardiovascular computed tomography. J Cardiovasc Comput Tomogr. 2008;2(1):12–22.

    Article  PubMed  Google Scholar 

  47. Shinbane JS, Colletti PM, Shellock FG. MR in patients with pacemakers and ICDs: defining the issues. J Cardiovasc Magn Reson. 2007;9(1):5–13.

    Article  PubMed  Google Scholar 

  48. Hoffmann A, Engelfriet P, Mulder B. Radiation exposure during follow-up of adults with congenital heart disease. Int J Cardiol. 2007;118(2):151–153.

    Article  PubMed  Google Scholar 

  49. Saad MB, Rohnean A, Sigal-Cinqualbre A, Adler G, Paul JF. Evaluation of image quality and radiation dose of thoracic and coronary dual-source CT in 110 infants with congenital heart disease. Pediatr Radiol. 2009;39(7):668–676.

    Article  PubMed  Google Scholar 

  50. Oztunc F, Baris S, Adaletli I, et al. Coronary events and anatomy after arterial switch operation for transposition of the great arteries: detection by 16-row multislice computed tomography angiography in pediatric patients. Cardiovasc Intervent Radiol. 2009; 32(2):206–212.

    Article  PubMed  Google Scholar 

  51. Ou P, Celermajer DS, Marini D, et al. Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries. JACC Cardiovasc Imaging. 2008;1(3):331–339.

    Article  PubMed  Google Scholar 

  52. Hayabuchi Y, Mori K, Kitagawa T, Inoue M, Kagami S. Accurate quantification of pulmonary artery diameter in patients with cyanotic congenital heart disease using multidetector-row computed tomography. Am Heart J. 2007;154(4):783–788.

    Article  PubMed  Google Scholar 

  53. Maeda E, Akahane M, Kato N, et al. Assessment of major aortopulmonary collateral arteries with multidetector-row computed tomography. Radiat Med. 2006;24(5):378–383.

    Article  PubMed  Google Scholar 

  54. Hirsch R, Gottliebson W, Crotty E, Fleck R, Strife J. Computed tomography angiography with three-dimensional reconstruction for pulmony venous definition in high-risk infants with congenital heart disease. Congenit Heart Dis. 2006;1(3):104–110.

    Article  PubMed  Google Scholar 

  55. Raman SV, Cook SC, McCarthy B, Ferketich AK. Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol. 2005;95(5):683–686.

    Article  PubMed  Google Scholar 

  56. Cook SC, McCarthy M, Daniels CJ, Cheatham JP, Raman SV. Usefulness of multislice computed tomography angiography to evaluate intravascular stents and transcatheter occlusion devices in patients with d-transposition of the great arteries after mustard repair. Am J Cardiol. 2004;94(7):967–969.

    Article  PubMed  Google Scholar 

  57. Hu XH, Huang GY, Pa M, et al. Multidetector CT angiography and 3D reconstruction in young children with coarctation of the aorta. Pediatr Cardiol. 2008;29(4):726–731.

    Article  PubMed  Google Scholar 

  58. Pinilla I, Bret M, Cuesta E, Borches D, Oliver JM, Gomez-Leon N. Role of computed tomography and magnetic resonance imaging in aortobronchial fistula diagnosis following aortic coarctation reparative surgery. Report of two cases. J Cardiovasc Surg. (Torino) 2006;47(2):221–227.

    Google Scholar 

  59. Morgan-Hughes GJ, Marshall AJ, Roobottom C. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. AJR Am J Roentgenol. 2003; 181(3):749–754.

    PubMed  Google Scholar 

  60. Funabashi N, Asano M, Sekine T, Nakayama T, Komuro I. Direction, location, and size of shunt flow in congenital heart disease evaluated by ECG-gated multislice computed tomography. Int J Cardiol. 2006;112(3):399–404.

    Article  PubMed  Google Scholar 

  61. Sato Y, Inoue F, Matsumoto N, et al. Detection of anomalous origins of the coronary artery by means of multislice computed tomography. Circ J Mar. 2005;69(3):320–324.

    Article  Google Scholar 

  62. de Jonge GJ, van Ooijen PM, Piers LH, et al. Visualization of anomalous coronary arteries on dual-source computed tomography. Eur Radiol. 2008;18(11):2425–2432.

    Article  PubMed  Google Scholar 

  63. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235(3):812–818.

    Article  PubMed  Google Scholar 

  64. Dodd JD, Ferencik M, Liberthson RR, et al. Evaluation of efficacy of 64-slice multidetector computed tomography in patients with congenital coronary fistulas. J Comput Assist Tomogr. 2008; 32(2):265–270.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerold S. Shinbane MD, FACC, FHRS, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shinbane, J.S., Cunningham, M.J., Baker, C.J., Starnes, V.A. (2010). CCTA: Cardiothoracic Surgery Applications. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics