Skip to main content

CT Imaging: Cardiac Electrophysiology Applications

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

An understanding of detailed 3-D cardiac anatomy is important to the field of cardiac electrophysiology. Cardiovascular computed tomographic angiography (CCTA) can comprehensively assess cardiovascular structure and function relevant to the assessment, treatment, and follow-up of patients with electrophysiologically-related disease processes. CCTA provides 3-D visualization of cardiac chambers, coronary vessels, and thoracic vasculature including structures particularly important to cardiac electrophysiology, such as the coronary veins, pulmonary veins, and left atrium. This comprehensive technology is extremely useful for the identification and characterization of cardiovascular substrates relevant to cardiac electrophysiology, and has great relevance to treatment of arrhythmias through preprocedure planning, procedural facilitation, and procedural follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsutani H, Sano T, Kondo T, et al. ECG-edit function in multidetector-row computed tomography coronary arteriography for patients with arrhythmias. Circ J. 2008;72(7):1071–1078.

    Article  PubMed  Google Scholar 

  2. Duran C, Kantarci M, Durur Subasi I, et al. Remarkable anatomic anomalies of coronary arteries and their clinical importance: a multidetector computed tomography angiographic study. J Comput Assist Tomogr. 2006;30(6):939–948.

    Article  PubMed  Google Scholar 

  3. Shabestari AA, Abdi S, Akhlaghpoor S, et al. Diagnostic performance of 64-channel multislice computed tomography in assessment of significant coronary artery disease in symptomatic subjects. Am J Cardiol. 2007;99(12):1656–1661.

    Article  PubMed  Google Scholar 

  4. Schuijf JD, Pundziute G, Jukema JW, et al. Diagnostic accuracy of 64-slice multislice computed tomography in the noninvasive evaluation of significant coronary artery disease. Am J Cardiol. 2006;98(2):145–148.

    Article  PubMed  Google Scholar 

  5. Ropers D, Rixe J, Anders K, et al. Usefulness of multidetector row spiral computed tomography with 64- x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol. 2006;97(3):343–348.

    Article  PubMed  Google Scholar 

  6. Laissy JP, Messika-Zeitoun D, Serfaty JM, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis. Usefulness of multi-detector cardiac computed tomography. Heart. 2007;93(9): 1121–1125.

    Article  PubMed  Google Scholar 

  7. Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med. 2006;166(13):1350–1356.

    Article  PubMed  Google Scholar 

  8. Kim TH, Ryu YH, Hur J, et al. Evaluation of right ventricular volume and mass using retrospective ECG-gated cardiac multidetector computed tomography: comparison with first-pass radionuclide angiography. Eur Radiol. 2005;15(9):1987–1993.

    Article  PubMed  Google Scholar 

  9. Butler J, Shapiro MD, Jassal DS, et al. Comparison of multidetector computed tomography and two-dimensional transthoracic echocardiography for left ventricular assessment in patients with heart failure. Am J Cardiol. 2007;99(2):247–249.

    Article  PubMed  Google Scholar 

  10. Cornily JC, Gilard M, Le Gal G, et al. Accuracy of 16-detector multislice spiral computed tomography in the initial evaluation of dilated cardiomyopathy. Eur J Radiol. 2007;61(1):84–90.

    Article  PubMed  Google Scholar 

  11. Andreini D, Pontone G, Pepi M, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2007;49(20):2044–2050.

    Article  PubMed  Google Scholar 

  12. Shiozaki AA, Santos TS, Artega E, Rochitte CE. Images in cardiovascular medicine. Myocardial delayed enhancement by computed tomography in hypertrophic cardiomyopathy. Circulation. 2007;115(17): e430–e431.

    Article  PubMed  Google Scholar 

  13. Bomma C, Dalal D, Tandri H, et al. Evolving role of multidetector computed tomography in evaluation of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Am J Cardiol. 2007;100(1):99–105.

    Article  PubMed  Google Scholar 

  14. Hamamichi Y, Ichida F, Hashimoto I, et al. Isolated noncompaction of the ventricular myocardium: ultrafast computed tomography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2001;17(4):305–314.

    Article  PubMed  CAS  Google Scholar 

  15. Mohrs OK, Magedanz A, Schlosser T. Noncompaction of the left ventricular myocardium detected by 64-slice multidetector computed tomography. Clin Cardiol. 2007;30(1):48.

    Article  PubMed  Google Scholar 

  16. Kirsch J, Williamson EE, Araoz PA. Non-compaction visualization using ECG-gated dual-source CT. Int J Cardiol. 2007;118(2):e46–e47.

    Article  PubMed  Google Scholar 

  17. Ito H, Dajani KA. A case with noncompaction of the left ventricular myocardium detected by 64-slice multidetector computed tomography. J Thorac Imaging. 2009;24(1):38–40.

    Article  PubMed  Google Scholar 

  18. McKenna WJ, Thiene G, Nava A, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J. 1994;71(3):215–218.

    Article  PubMed  CAS  Google Scholar 

  19. Kimura F, Sakai F, Sakomura Y, et al. Helical CT features of arrhythmogenic right ventricular cardiomyopathy. Radiographics. 2002;22(5): 1111–1124.

    PubMed  Google Scholar 

  20. Wu YW, Tadamura E, Kanao S, et al. Structural and functional assessment of arrhythmogenic right ventricular dysplasia/cardiomyopathy by multi-slice computed tomography: comparison with cardiovascular magnetic resonance. Int J Cardiol. 2007;115(3):e118–e121.

    Article  PubMed  Google Scholar 

  21. Soh EK, Villines TC, Feuerstein IM. Sixty-four-multislice computed tomography in a patient with arrhythmogenic right ventricular dysplasia. J Cardiovasc Comput Tomogr. 2008;2(3):191–192.

    Article  PubMed  Google Scholar 

  22. Omichi C, Sugiyabu Y, Kakizawa Y, Endo M. Three-dimensional image of arrhythmogenic right ventricular dysplasia/cardiomyopathy reconstructed with 64-multislice computed tomography. Heart Rhythm. 2008;5(11):1631–1632.

    Article  PubMed  Google Scholar 

  23. Matsuo S, Sato Y, Nakae I, et al. Left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy demonstrated by multidetector-row computed tomography. Int J Cardiol. 2007;115(3):e129–e131.

    Article  PubMed  Google Scholar 

  24. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–666.

    Article  PubMed  CAS  Google Scholar 

  25. Marine JE, Dong J, Calkins H. Catheter ablation therapy for atrial fibrillation. Prog Cardiovasc Dis. 2005;48(3):178–192.

    Article  PubMed  Google Scholar 

  26. Haissaguerre M, Hocini M, Sanders P, et al. Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of subsequent arrhythmias. J Cardiovasc Electrophysiol. 2005; 16(11):1138–1147.

    Article  PubMed  Google Scholar 

  27. Tamborero D, Mont L, Molina I, et al. Selective segmental ostial ablation and circumferential pulmonary veins ablation. Results of an individualized strategy to cure refractory atrial fibrillation. J Interv Card Electrophysiol. 2007;19(1):19–27.

    Article  PubMed  Google Scholar 

  28. Oral H, Pappone C, Chugh A, et al. Circumferential pulmonary-vein ablation for chronic atrial fibrillation. N Engl J Med. 2006;354(9):934–941.

    Article  PubMed  CAS  Google Scholar 

  29. Schwartzman D, Bazaz R, Nosbisch J. Catheter ablation to suppress atrial fibrillation: evolution of technique at a single center. J Interv Card Electrophysiol. 2003;9(2):295–300.

    Article  PubMed  Google Scholar 

  30. Scharf C, Sneider M, Case I, et al. Anatomy of the pulmonary veins in patients with atrial fibrillation and effects of segmental ostial ablation analyzed by computed tomography. J Cardiovasc Electrophysiol. 2003;14(2):150–155.

    Article  PubMed  Google Scholar 

  31. Wood MA, Wittkamp M, Henry D, et al. A comparison of pulmonary vein ostial anatomy by computerized tomography, echocardiography, and venography in patients with atrial fibrillation having radiofrequency catheter ablation. Am J Cardiol. 2004;93(1):49–53.

    Article  PubMed  Google Scholar 

  32. Jongbloed MR, Dirksen MS, Bax JJ, et al. Atrial fibrillation: multi-detector row CT of pulmonary vein anatomy prior to radiofrequency catheter ablation–initial experience. Radiology. 2005;234(3):702–709.

    Article  PubMed  Google Scholar 

  33. Kaseno K, Tada H, Koyama K, et al. Prevalence and characterization of pulmonary vein variants in patients with atrial fibrillation determined using 3-dimensional computed tomography. Am J Cardiol. 2008;101(11):1638–1642.

    Article  PubMed  Google Scholar 

  34. Helms AS, West JJ, Patel A, et al. Relation of left atrial volume from three-dimensional computed tomography to atrial fibrillation recurrence following ablation. Am J Cardiol. 2009;103(7):989–993.

    Article  PubMed  Google Scholar 

  35. Stolzmann P, Scheffel H, Leschka S, et al. Reference values for quantitative left ventricular and left atrial measurements in cardiac computed tomography. Eur Radiol. 2008;18(8):1625–1634.

    Article  PubMed  Google Scholar 

  36. Hof I, Arbab-Zadeh A, Scherr D, et al. Correlation of left atrial diameter by echocardiography and left atrial volume by computed tomography. J Cardiovasc Electrophysiol. 2009;20(2):159–163.

    Article  PubMed  Google Scholar 

  37. Christiaens L, Lequeux B, Ardilouze P, et al. A new method for measurement of left atrial volumes using 64-slice spiral computed tomography: comparison with two-dimensional echocardiographic techniques. Int J Cardiol. 2009;131(2):217–224.

    Article  PubMed  Google Scholar 

  38. Mahabadi AA, Samy B, Seneviratne SK, et al. Quantitative assessment of left atrial volume by electrocardiographic-gated contrast-enhanced multidetector computed tomography. J Cardiovasc Comput Tomogr. 2009;3(2):80–87.

    Article  PubMed  Google Scholar 

  39. Wissner E, Wellnitz CV, Srivathsan K, Scott LR, Altemose GT. Value of multislice computed tomography angiography of the thorax in preparation for catheter ablation for the treatment of atrial fibrillation: the impact of unexpected cardiac and extracardiac findings on patient care. Eur J Radiol. 2008;72(2):284–288.

    Article  PubMed  Google Scholar 

  40. Shinbane JS. Cardiovascular computed tomographic angiography in patients with atrial fibrillation: challenges of anatomy, physiology, and electrophysiology. J Cardiovasc Comput Tomogr. 2008;2(3):181–182.

    Article  PubMed  Google Scholar 

  41. Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography: a word of caution. JACC Cardiovasc Imaging. 2009;2(1):77–79.

    Article  PubMed  Google Scholar 

  42. Saremi F, Channual S, Gurudevan SV, Narula J, Abolhoda A. Prevalence of left atrial appendage pseudothrombus filling defects in patients with atrial fibrillation undergoing coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2008;2(3):164–171.

    Article  PubMed  Google Scholar 

  43. Martinez MW, Kirsch J, Williamson EE, et al. Utility of nongated multidetector computed tomography for detection of left atrial thrombus in patients undergoing catheter ablation of atrial fibrillation. JACC Cardiovasc Imaging. 2009;2(1):69–76.

    Article  PubMed  Google Scholar 

  44. Achenbach S, Sacher D, Ropers D, et al. Electron beam computed tomography for the detection of left atrial thrombi in patients with atrial fibrillation. Heart. 2004;90(12):1477–1478.

    Article  PubMed  CAS  Google Scholar 

  45. Shapiro MD, Neilan TG, Jassal DS, et al. Multidetector computed tomography for the detection of left atrial appendage thrombus: a comparative study with transesophageal echocardiography. J Comput Assist Tomogr. 2007;31(6):905–909.

    Article  PubMed  Google Scholar 

  46. Hur J, Kim YJ, Nam JE, et al. Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography–a preliminary report. Radiology. 2008;249(1):81–87.

    Article  PubMed  Google Scholar 

  47. Patel A, Au E, Donegan K, et al. Multidetector row computed tomography for identification of left atrial appendage filling defects in patients undergoing pulmonary vein isolation for treatment of atrial fibrillation: comparison with transesophageal echocardiography. Heart Rhythm. 2008;5(2):253–260.

    Article  PubMed  Google Scholar 

  48. Tang RB, Dong JZ, Zhang ZQ, et al. Comparison of contrast enhanced 64-slice computed tomography and transesophageal echocardiography in detection of left atrial thrombus in patients with atrial fibrillation. J Interv Card Electrophysiol. 2008;22(3):199–203.

    Article  PubMed  Google Scholar 

  49. Gottlieb I, Pinheiro A, Brinker JA, et al. Diagnostic accuracy of arterial phase 64-slice multidetector CT angiography for left atrial appendage thrombus in patients undergoing atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2008;19(3):247–251.

    Article  PubMed  Google Scholar 

  50. Hur J, Kim YJ, Lee HJ, et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology. 2009;251(3):683–690.

    Article  PubMed  Google Scholar 

  51. Tani T, Yamakami S, Matsushita T, et al. Usefulness of electron beam tomography in the prone position for detecting atrial thrombi in chronic atrial fibrillation. J Comput Assist Tomogr. 2003;27(1):78–84.

    Article  PubMed  Google Scholar 

  52. Kim YY, Klein AL, Halliburton SS, et al. Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J. 2007;154(6):1199–1205.

    Article  PubMed  Google Scholar 

  53. Pappone C, Oral H, Santinelli V, et al. Atrio-esophageal fistula as a complication of percutaneous transcatheter ablation of atrial fibrillation. Circulation. 2004;109:2724–2726.

    Article  PubMed  Google Scholar 

  54. Lemola K, Sneider M, Desjardins B, et al. Computed tomographic analysis of the anatomy of the left atrium and the esophagus. Implications for left atrial catheter ablation. Circulation. 2004;110:3655–3660.

    Article  PubMed  Google Scholar 

  55. Cury RC, Abbara S, Schmidt S, et al. Relationship of the esophagus and aorta to the left atrium and pulmonary veins: implications for catheter ablation of atrial fibrillation. Heart Rhythm. 2005;2(12):1317–1323.

    Article  PubMed  Google Scholar 

  56. Piorkowski C, Hindricks G, Schreiber D, et al. Electroanatomic reconstruction of the left atrium, pulmonary veins, and esophagus compared with the “true anatomy” on multislice computed tomography in patients undergoing catheter ablation of atrial fibrillation. Heart Rhythm. 2006;3(3):317–327.

    Article  PubMed  Google Scholar 

  57. Lemola K, Mueller G, Desjardins B, et al. Topographic analysis of the coronary sinus and major cardiac veins by computed tomography. Heart Rhythm. 2005;2(7):694–699.

    Article  PubMed  Google Scholar 

  58. Wu MH, Wongcharoen W, Tsao HM, et al. Close relationship between the bronchi and pulmonary veins: implications for the prevention of atriobronchial fistula after atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2007;18(10):1056–1059.

    Article  PubMed  Google Scholar 

  59. Kistler PM, Earley MJ, Harris S, et al. Validation of three-dimensional cardiac image integration: use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(4):341–348.

    Article  PubMed  Google Scholar 

  60. Sra J, Krum D, Hare J, et al. Feasibility and validation of registration of three-dimensional left atrial models derived from computed tomography with a noncontact cardiac mapping system. Heart Rhythm. 2005;2(1):55–63.

    Article  PubMed  Google Scholar 

  61. Heist EK, Chevalier J, Holmvang G, et al. Factors affecting error in integration of electroanatomic mapping with CT and MR imaging during catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2006;17(1):21–27.

    Article  PubMed  Google Scholar 

  62. Kistler PM, Rajappan K, Jahngir M, et al. The impact of CT image integration into an electroanatomic mapping system on clinical outcomes of catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17(10):1093–1101.

    Article  PubMed  Google Scholar 

  63. Martinek M, Nesser HJ, Aichinger J, Boehm G, Purerfellner H. Impact of integration of multislice computed tomography imaging into three-dimensional electroanatomic mapping on clinical outcomes, safety, and efficacy using radiofrequency ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2007;30(10):1215–1223.

    Article  PubMed  Google Scholar 

  64. Robbins IM, Colvin EV, Doyle TP, et al. Pulmonary vein stenosis after catheter ablation of atrial fibrillation. Circulation. 1998;98(17):1769–1775.

    Article  PubMed  CAS  Google Scholar 

  65. Packer DL, Keelan P, Munger TM, et al. Clinical presentation, investigation, and management of pulmonary vein stenosis complicating ablation for atrial fibrillation. Circulation. 2005;111(5):546–554.

    Article  PubMed  Google Scholar 

  66. Dong J, Vasamreddy CR, Jayam V, et al. Incidence and predictors of pulmonary vein stenosis following catheter ablation of atrial fibrillation using the anatomic pulmonary vein ablation approach: results from paired magnetic resonance imaging. J Cardiovasc Electrophysiol Aug. 2005;16(8):845–852.

    Article  Google Scholar 

  67. Sigurdsson G, Troughton RW, Xu XF, et al. Detection of pulmonary vein stenosis by transesophageal echocardiography: comparison with multidetector computed tomography. Am Heart J. 2007;153(5):800–806.

    Article  PubMed  Google Scholar 

  68. Wongcharoen W, Tsao HM, Wu MH, et al. Preexisting pulmonary vein stenosis in patients undergoing atrial fibrillation ablation: a report of five cases. J Cardiovasc Electrophysiol Apr. 2006;17(4):423–425.

    Article  Google Scholar 

  69. Chae S, Oral H, Good E, et al. Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation: mechanistic insights, results of catheter ablation, and risk factors for recurrence. J Am Coll Cardiol. 2007;50(18):1781–1787.

    Article  PubMed  Google Scholar 

  70. Malamis AP, Kirshenbaum KJ, Nadimpalli S. CT radiographic findings: atrio-esophageal fistula after transcatheter percutaneous ablation of atrial fibrillation. J Thorac Imaging. 2007;22(2):188–191.

    Article  PubMed  Google Scholar 

  71. Aleong R, Heist EK, Ruskin JN, Mansour M. Integration of intracardiac echocardiography with magnetic resonance imaging allows visualization of the esophagus during catheter ablation of atrial fibrillation. Heart Rhythm. 2008;5(7):1088.

    Article  PubMed  Google Scholar 

  72. Jongbloed MR, Bax JJ, van der Wall EE, Schalij MJ. Thrombus in the left atrial appendage detected by intracardiac echocardiography. Int J Cardiovasc Imaging. 2004;20(2):113–116.

    Article  PubMed  CAS  Google Scholar 

  73. den Uijl DW, Tops LF, Tolosana JM, et al. Real-time integration of intracardiac echocardiography and multislice computed tomography to guide radiofrequency catheter ablation for atrial fibrillation. Heart Rhythm. 2008;5(10):1403–1410.

    Article  Google Scholar 

  74. Ren JF, Marchlinski FE, Callans DJ. Left atrial thrombus associated with ablation for atrial fibrillation: identification with intracardiac echocardiography. J Am Coll Cardiol. 2004;43(10):1861–1867.

    Article  PubMed  Google Scholar 

  75. Saliba W, Thomas J. Intracardiac echocardiography during catheter ablation of atrial fibrillation. Europace. 2008;10 Suppl 3:iii42–47.

    Google Scholar 

  76. Knecht S, Skali H, O’Neill MD, et al. Computed tomography-fluoroscopy overlay evaluation during catheter ablation of left atrial arrhythmia. Europace. 2008;10(8):931–938.

    Article  PubMed  Google Scholar 

  77. Mao S, Shinbane JS, Girsky MJ, et al. Coronary venous imaging with electron beam computed tomographic angiography: three-dimensional mapping and relationship with coronary arteries. Am Heart J. 2005;150(2):315–322.

    Article  PubMed  Google Scholar 

  78. Jongbloed MR, Lamb HJ, Bax JJ, et al. Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol. 2005;45(5):749–753.

    Article  PubMed  Google Scholar 

  79. Van de Veire NR, Schuijf JD, De Sutter J, et al. Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol. 2006; 48(9):1832–1838.

    Article  PubMed  Google Scholar 

  80. Saxon LA, De Marco T, Schafer J, Chatterjee K, Kumar UN, Foster E. Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation. 2002;105(11):1304–1310.

    Article  PubMed  Google Scholar 

  81. Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002;346(24):1845–1853.

    Article  PubMed  Google Scholar 

  82. St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107(15):1985–1990.

    Article  PubMed  Google Scholar 

  83. Shinbane JS, Girsky MJ, Mao S, Budoff MJ. Thebesian valve imaging with electron beam CT angiography: implications for resynchronization therapy. Pacing Clin Electrophysiol. 2004;27(11):1566–1567.

    Article  PubMed  Google Scholar 

  84. Matsumoto Y, Krishnan S, Fowler SJ, et al. Detection of phrenic nerves and their relation to cardiac anatomy using 64-slice multidetector computed tomography. Am J Cardiol. 2007;100(1):133–137.

    Article  PubMed  Google Scholar 

  85. Girsky MJ, Shinbane JS, Ahmadi N, Flores F, Mao S, Budoff MJ. Three-Dimensional coronary venous imaging with computed tomographic angiography facilitates cardiac resynchronization therapy. J Am Coll Cardiol. 2009;53:A265.

    Google Scholar 

  86. Van de Veire NR, Marsan NA, Schuijf JD, et al. Noninvasive imaging of cardiac venous anatomy with 64–slice multi-slice computed tomography and noninvasive assessment of left ventricular dyssynchrony by 3-dimensional tissue synchronization imaging in patients with heart failure scheduled for cardiac resynchronization therapy. Am J Cardiol. 2008;101(7):1023–1029.

    Article  PubMed  Google Scholar 

  87. White JA, Yee R, Yuan X, et al. Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol. 2006;48(10):1953–1960.

    Article  PubMed  Google Scholar 

  88. Bleeker GB, Kaandorp TA, Lamb HJ, et al. Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation. 2006;113(7):969–976.

    Article  PubMed  Google Scholar 

  89. Chalil S, Stegemann B, Muhyaldeen SA, et al. Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin Electrophysiol. 2007;30(10):1201–1209.

    Article  PubMed  CAS  Google Scholar 

  90. Lardo AC, Cordeiro MA, Silva C, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113(3):394–404.

    Article  PubMed  Google Scholar 

  91. Chiou KR, Liu CP, Peng NJ, et al. Identification and viability assessment of infarcted myocardium with late enhancement multidetector computed tomography: comparison with thallium single photon emission computed tomography and echocardiography. Am Heart J. 2008;155(4):738–745.

    Article  PubMed  Google Scholar 

  92. Mahnken AH, Koos R, Katoh M, et al. Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol. 2005;45(12):2042–2047.

    Article  PubMed  Google Scholar 

  93. Sato A, Hiroe M, Nozato T, et al. Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction. Eur Heart J. 2008;29(4):490–498.

    Article  PubMed  Google Scholar 

  94. Habis M, Capderou A, Ghostine S, et al. Acute myocardial infarction early viability assessment by 64-slice computed tomography immediately after coronary angiography: comparison with low-dose dobutamine echocardiography. J Am Coll Cardiol. 2007;49(11):1178–1185.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerold S. Shinbane MD, FACC, FHRS, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Shinbane, J.S., Girsky, M.J., Saxon, L.A., Cao, M.K., Cesario, D.A., Budoff, M.J. (2010). CT Imaging: Cardiac Electrophysiology Applications. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_22

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics