Skip to main content

Aortic, Renal, and Carotid CT Angiography

  • Chapter
  • First Online:
  • 1883 Accesses

Abstract

Until recently, computed tomography (CT) did not allow for submillimeter imaging and was plagued by artifacts related to thick slab imaging (partial voluming and blooming). These artifacts impair image quality and promote venous contamination (the larger vein obscuring visualization of the smaller artery). Now, volumetric datasets can be acquired with very thin slices (anywhere from 0.5 to 0.625 mm per image) that allow visualization of smaller structures with less partial volume averaging in the z-axis as well as superior 3D and/or multiplanar imaging. Newer multidetector computed tomography (MDCT) scanners have near isotropic voxels (similar z-axis to x-axis and y-axis imaging resolution), which results in improved multiplane reconstructions with higher resolution. During the past decade, we have been witness to a tremendous development in the field of CT imaging. The interest in cardiac has largely overshadowed the vascular uses of CTA, however improvements in scan time and image quality has assisted vascular imaging as well. Currently, CTA of the vascular beds has largely replaced diagnostic angiography in many institutions. Imaging non-cardiac vascular beds are easier, as there is no collimation or stair-step (misregistration) artifacts, due to no need for ECG gating. Furthermore, these vascular beds do not suffer from motion artifacts and target vessels are mostly large diameter, so imaging with CT is ideal. CTA is less expensive, less invasive, and allows simultaneous visualization of large anatomic areas from multiple angles using 3D reconstructions. Studies demonstrate this is the most cost-effective mechanism to work up patients with vascular disease, and has distinct advantages over vascular ultrasound and magnetic resonance imaging related to image quality and diagnostic accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rooholamini SA, Stanford W. Ultrafast computed tomography in the diagnosis of aortic aneurysms and dissections. In: Stanford W, Rum-berger J, eds. Ultrafast Computed Tomography in Cardiac Imaging: Principles and Practice. Mount Kisco, NY: Futura Publishing; 1992:287–310.

    Google Scholar 

  2. Katz DS, Hon M. CT angiography of the lower extremities and aor-toiliac system with a multi-detector row helical CT scanner: promise of new opportunities fulfilled. Radiology. 2001;221:7–10.

    Article  PubMed  CAS  Google Scholar 

  3. Kim JK, Park SY, Kim HJ, et al. Living donor kidneys: usefulness of multi-detector row CT for comprehensive evaluation. Radiology. 2003;229:869–876.

    Article  PubMed  Google Scholar 

  4. Fishman JE. Imaging of blunt aortic and great vessel trauma. J Thorac Imaging. 2000;15(2):97–103.

    Article  PubMed  CAS  Google Scholar 

  5. Kouchoukos NT, Dougenis D. Surgery of the thoracic aorta. N Engl J Med. 1997;336(26):1876–1888.

    Article  PubMed  CAS  Google Scholar 

  6. Rubin GD. Helical CT angiography of the thoracic aorta. J Thorac Imaging. 1997;12(2):128–149.

    Article  PubMed  CAS  Google Scholar 

  7. Rubin GD, Shiau MC, Leung AN, Kee ST, Logan LJ, Sofilos MC. Aorta and iliac arteries: single versus multiple detector-row helical CT angiography. Radiology. 2000;215(3):670–676.

    PubMed  CAS  Google Scholar 

  8. Gotway MB, Dawn SK. Thoracic aorta imaging with multislice CT. Radiol Clin North Am. 2003;41:521–543.

    Article  PubMed  Google Scholar 

  9. Roos JE, Willmann JK, Weishaupt D, et al. Thoracic aorta: motion artifact reduction with retrospective and prospective electrocardio-graphy assisted multi-detector row CT. Radiology. 2002;222:271–277.

    Article  PubMed  Google Scholar 

  10. Galla JD, Ergin MA, Lansman SL, et al. Identification of risk factors in patients undergoing thoracoabdominal aneurysm repair. J Card Surg. 1997;12:292–299.

    PubMed  CAS  Google Scholar 

  11. Semba CP, Kato N, Kee ST, et al. Acute rupture of the descending tho-racic aorta: repair with use of endovascular stent-grafts. J Vasc Interv Radiol. 1997;8(3):337–342.

    Article  PubMed  CAS  Google Scholar 

  12. Zinck SE, Primack SL. Radiographic and CT findings in blunt chest trauma. J Thorac Imaging. 2000;15(2):87–96.

    Article  PubMed  CAS  Google Scholar 

  13. Lu B, Dai RP, Jing BL, et al. Electron beam tomography with three-dimensional reconstruction in the diagnosis of aortic diseases. J Cardiovasc Surg. 2000;41:659–668.

    CAS  Google Scholar 

  14. Hobo R, Buth J. Secondary interventions following endovascular abdominal aortic aneurysm repair using current endografts. A EUROSTAR report. J Vasc Surg. 2006;43(5):896–902.

    Article  PubMed  Google Scholar 

  15. Stueckle CA, Haegele KF, Jendreck M, et al. Multislice computed tomography angiography of the abdominal arteries: comparison between computed tomography angiography and digital subtraction angiography findings in 52 cases. Australas Radiol. 2004;48(2):142–147.

    Article  PubMed  Google Scholar 

  16. Nihan E, Levent A, Sekup A. Assessment of aortic diseases with elec-tron beam tomographic angiography. EBT Symp. 2003;11–15.

    Google Scholar 

  17. Glockner JF, Vrtiska TJ. Renal MR and CT angiography: current concepts. Abdom Imaging. 2007;32:407–420.

    Article  PubMed  Google Scholar 

  18. Fleischmann D. Multiple detector-row CT angiography of the renal and mesenteric vessels. Eur J Radiol. 2003;45(suppl 1):S79–S87.

    Article  PubMed  Google Scholar 

  19. Willmann JK, Wildermuth S, Pfammatter T, et al. Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography. Radiology. 2003;226:798–811.

    Article  PubMed  Google Scholar 

  20. Tepe SM, Memisoglu E, Kural AR. Three-dimensional noninvasive contrast-enhanced electron beam tomography angiography of the kidneys: adjunctive use in medical and surgical management. Clin Imaging. 2004;28(1):52–58.

    Article  PubMed  Google Scholar 

  21. Mallouhi A, Schocke M, Judmaier W, et al. 3D MR angiography of renal arteries: comparison of volume rendering and maximum intensity projection algorithms. Radiology. 2002;223(2):509–516.

    Article  PubMed  Google Scholar 

  22. Johnson PT, Halpern EJ, Kuszyk BS, et al. Renal artery stenosis: CT angiography – comparison of real-time volume-rendering and maximum intensity projection algorithms. Radiology. 1999;211(2):337–343.

    PubMed  CAS  Google Scholar 

  23. Laghi A, Iannaccone R, Catalano C, et al. Multislice spiral computed tomography angiography of mesenteric arteries. Lancet. 2001;358:638–639.

    Article  PubMed  CAS  Google Scholar 

  24. Lawler LP, Fishman EK. Celiomesenteric anomaly demonstration by multidetector CT and volume rendering. J Comput Assist Tomogr. 2001;25:802–804.

    Article  PubMed  CAS  Google Scholar 

  25. Erbay N, Raptopoulos V, Pomfret EA, et al. Living donor liver trans-plantation in adults: vascular variants important in surgical plan-ning for donors and recipients. Am J Roentgenol. 2003;181:109–114.

    Google Scholar 

  26. Byun JH, Kim TK, Lee SS, et al. Evaluation of the hepatic artery in potential donors for living donor liver transplantation by com-puted tomography angiography using multidetector-row computed tomography: comparison of volume rendering and maximum intensity projection techniques. J Comput Assist Tomogr. 2003;27:125–131.

    Article  PubMed  Google Scholar 

  27. Shih MP, Hagspiel KD. CTA and MRA in mesenteric ischemia: part 1, role in diagnosis and differential diagnosis. AJR Am J Roentgenol. 2007;188(2):452–461.

    Article  PubMed  Google Scholar 

  28. Kannel WB. Current status of the epidemiology of brain infarction associated with occlusive arterial disease. Stroke. 1971;2:295–318.

    Article  PubMed  CAS  Google Scholar 

  29. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in sympto-matic patients with high-grade carotid stenosis. N Engl J Med. 1991;325:445–453.

    Article  Google Scholar 

  30. Smith WS, Roberts HC, Chuang NA, et al. Safety and feasibility of a CT protocol for acute stroke: combined CT, CT angiography, and CT perfusion imaging in 53 consecutive patients. Am J Neuroradiol. 2003;24:688–690.

    PubMed  Google Scholar 

  31. Na DG, Ryoo JW, Lee KH, et al. Multiphasic perfusion computed tomography in hyperacute ischemic stroke: comparison with diffu-sion and perfusion magnetic resonance imaging. J Comput Assist Tomogr. 2003;27:194–206.

    Article  PubMed  Google Scholar 

  32. European Carotid Surgery Trialists Collaborative Group. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet. 1991;337:1235–1243.

    Article  Google Scholar 

  33. Barnett HJ, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis: North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339:1415–1425.

    Article  PubMed  CAS  Google Scholar 

  34. Randoux B, Marro B, Koskas F, et al. Carotid artery stenosis: prospec-tive comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Radiology. 2001;220(1):179–185.

    PubMed  CAS  Google Scholar 

  35. Saba L, Caddeo G, Sanfilippo R, et al. CT and ultrasound in the study of ulcerated carotid plaque compared with surgical results: potentialities and advantages of multidetector row CT angiography. Am J Neuroradiol. 2007;28(6):1061–1066.

    Article  PubMed  CAS  Google Scholar 

  36. Hatsukami TS, Ferguson MS, Beach KW, et al. Carotid plaque mor-phology and clinical events. Stroke. 1997;28:95–100.

    Article  PubMed  CAS  Google Scholar 

  37. Comerota AJ, Katz ML, White JV, Grosh JD. The preoperative diag-nosis of the ulcerated carotid atheroma. J Vasc Surg. 1990;11:505-510.

    PubMed  CAS  Google Scholar 

  38. Runge VM, Kirsch JE, Lee C. Contrast-enhanced MR angiography. J Magn Reson Imaging. 1993;3:233–239.

    Article  PubMed  CAS  Google Scholar 

  39. Marro B, Zouaoui A, Koskas F, et al. Computerized tomographic angiography scan following carotid endarterectomy. Ann Vasc Surg. 1998;12:451–456.

    Article  PubMed  CAS  Google Scholar 

  40. Castillo M, Wilson JD. CT angiography of the common carotid artery bifurcation: comparison between two techniques and conventional angiography. Neuroradiology. 1994;36:602–604.

    Article  PubMed  CAS  Google Scholar 

  41. Cinat M, Lane CT, Pham H, Lee A, Wilson SE, Gordon I. Helical CT angiography in the preoperative evaluation of carotid artery steno-sis. J Vasc Surg. 1998;28:290–300.

    Article  PubMed  CAS  Google Scholar 

  42. Leclerc X, Martinat P, Godefroy O, et al. Contrast-enhanced three-dimensional fast imaging with steady-state precession (FISP) MR angiography of supraaortic vessels: preliminary results. Am J Neuroradiol. 1998;19:1405–1413.

    PubMed  CAS  Google Scholar 

  43. Slosman F, Stolpen AH, Lexa FJ, et al. Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced MR angiography. Am J Roentgenol. 1998;170:489–495.

    CAS  Google Scholar 

  44. Scarabino T, Carriero A, Magarelli N, et al. MR angiography in carotid stenosis: a comparison of three techniques. Eur J Radiol. 1998;28:117–125.

    Article  PubMed  CAS  Google Scholar 

  45. Cronqvist M, Stahlberg F, Larsson EM, Lonntoft M, Holtas S. Evalu-ation of time-of-flight and phase-contrast MRA sequences at 1.0 T for diagnosis of carotid artery disease. I. A phantom and volunteer study. Acta Radiol. 1996;37:267–277.

    Article  PubMed  CAS  Google Scholar 

  46. Remonda L, Heid O, Schroth G. Carotid artery stenosis, occlusion, and pseudo-occlusion: first-pass, gadolinium-enhanced, three-dimensional MR angiography – preliminary study. Radiology. 1998;208:95–102.

    Google Scholar 

  47. Levy RA, Prince MR. Arterial-phase three-dimensional contrast-enhanced MR angiography of the carotid arteries. Am J Roentgenol. 1996;167:211–215.

    CAS  Google Scholar 

  48. Randoux B, Marro B, Marsault C. Carotid artery stenosis: competiton between CT angiography and MR angiography. Am J Neuroradiol. 2004;25(4):663–664.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Budoff MD, FACC, FAHA, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Budoff, M.J., Gupta, M. (2010). Aortic, Renal, and Carotid CT Angiography. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_17

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics