Skip to main content

Computed Tomography: Overview

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

The development of computed tomography (CT), resulting in widespread clinical use of CT scanning by the early 1980s, was a major breakthrough in clinical diagnosis across multiple fields. The primary advantage of CT was the ability to obtain thin cross-sectional axial images, with improved spatial resolution over ultrasound, nuclear medicine, and magnetic resonance imaging. This imaging avoided super-position of three-dimensional (3D) structures onto a planar 2D representation, as is the problem with conventional projection X-ray (fluoroscopy). CT images, which are inherently digital and thus quite robust, are amenable to 3D computer reconstruction, allowing for ultimately nearly an infinite number of projections. From a cardiac perspective, the increased spatial resolution is the reason for its increase in sensitivity for atherosclerosis, plaque detection, and coronary artery disease (CAD). With CT, smaller objects can be seen with better image quality. Localization of structures (in any plane) is more accurate and easier with tomography than with projection imaging like fluoroscopy. The exceptional contrast resolution of CT (ability to differentiate fat, air, tissue, and water), allows visualization of more than the lumen or stent, but rather the plaque, artery wall, and other cardiac and noncardiac structures simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao S, Budoff MJ, Oudiz RJ, Bakhsheshi H, Wang S, Brundage BH. A simple single slice method for measurement of left and right ventricular enlargement by electron beam tomography. Int J Card Imaging. 2000;16:383–390.

    Article  PubMed  CAS  Google Scholar 

  2. Budoff MJ, Mao SS, Wang S, Bakhsheshi H, Brundage BH. A Simple single slice method for measurement of left and right atrial volume by electron beam computed tomography. Acad Radiol. 1999;6:481–486.

    Article  PubMed  CAS  Google Scholar 

  3. Stuber M, Botnar RM, Fischer SE, et al. Preliminary report of in-vivo coronary MRA at 3 Tesla in humans. Magn Reson Med. 2002;48:425–428.

    Article  PubMed  Google Scholar 

  4. Carr JJ, Nelson JC, Wong ND, et al. Calcified coronary artery plaque measurement with cardiac CT in population-based studies: stan-dardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA) and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology. 2005;234:35–43.

    Article  PubMed  Google Scholar 

  5. Nieman K, Rensing BJ, van Geuns RJ, et al. Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart. 2002;88(5):470–474.

    Article  PubMed  CAS  Google Scholar 

  6. Budoff MJ, Achenbach S, Blumenthal RS, et al. Assessment of coronary artery disease by cardiac computed tomography, a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation. 2006;114(16):1761–1791.

    Article  PubMed  Google Scholar 

  7. Leber AW, Knez A, von Ziegler F, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol. 2005;46:147–154.

    Article  PubMed  Google Scholar 

  8. Regenfus M, Ropers D, Achenbach S, et al. Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol. 2000;36:44–50.

    Article  PubMed  CAS  Google Scholar 

  9. Kim WY, Danias PG, Stuber M, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  10. Blobel J, Baartman H, Rogalla P, Mews J, Lembcke A. Spatial and temporal resolution with 16-slice computed tomography for cardiac imaging. Fortschr Roentgenstr. 2003;175:1264–1271.

    Article  CAS  Google Scholar 

  11. Lembcke A, Rogalla P, Mews J, et al. Imaging of the coronary arteries by means of multislice helical CT: optimization of image quality with multisegmental reconstruction and variable gantry rotation time. Fortschr Roentgenstr. 2003;175:780–785.

    Article  CAS  Google Scholar 

  12. Wicky S, Rosol M, Hoffmann U, Graziano M, Yucel KE, Brady TJ. Comparative study with a moving heart phantom of the impact of temporal resolution on image quality with two multidetector electrocardiography-gated computed tomography units. J Comput Assist Tomogr. 2003;27:392–398.

    Article  PubMed  Google Scholar 

  13. Dewey M, Laule M, Krug L, et al. Multisegment and halfscan reconstruction of 16-slice computed tomography for detection of coronary artery stenosis. Invest Radiol. 2004;39:223–229.

    Article  PubMed  Google Scholar 

  14. Mao S, Lu B, Oudiz RJ, Bakhsheshi H, Liu SCK, Budoff MJ. Coronary artery motion in electron beam tomography. J Comput Assist Tomogr. 2000;24:253–258.

    Article  PubMed  CAS  Google Scholar 

  15. Orakzai SH, Orakzai RH, Nasir K, Budoff MJ. Assessment of cardiac function using multidetector row computed tomography. J Comput Assist Tomogr. 2006;30(4):555–563.

    Article  PubMed  Google Scholar 

  16. Mao SS, Budoff MJ, Oudiz RJ, et al. Effect of exercise on left and right ventricular ejection fraction and wall motion in patients with coronary artery disease: an electron beam computed tomography study. Int J Cardiol. 1999;71:23–31.

    Article  PubMed  CAS  Google Scholar 

  17. McKay CR, Brundage BH, Ullyot DJ, et al. Evaluation of early post-operative coronary artery bypass grafts patency by contrast-enhanced computed tomography. J Am Coll Cardiol. 1983;2:312–317.

    Article  PubMed  CAS  Google Scholar 

  18. Nissen SE, Gurley GL. Assessment of coronary angioplasty results by intravascular ultrasound. In: Serruys PW, Straus BH, King SB III, eds. Restenosis After Intervention with New Mechanical Devices. Dordrecht, Netherlands: Kluwer; 1992:73–96.

    Chapter  Google Scholar 

  19. Ritchie CJ, Godwin JD. Minimum scan speeds for suppression of motion artifacts in CT. Radiology. 1992;185:37–42.

    PubMed  CAS  Google Scholar 

  20. Wang Y, Vidan E. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology. 1999;213(3):751–758.

    PubMed  CAS  Google Scholar 

  21. Hofman MB, Wickline SA. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisi-tion window duration for MR flow quantification. J Magn Reson Imaging. 1998;8(3):568–576.

    Article  PubMed  CAS  Google Scholar 

  22. Marcus JT, Smeenk HG. Flow profiles in the left anterior descending and the right coronary artery assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr. 1999;23(4):567–576.

    Article  PubMed  CAS  Google Scholar 

  23. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107:917–922.

    Article  PubMed  Google Scholar 

  24. Hunold P, Vogt FM, Schmermund A, et al. Radiation exposure during cardiac CT: effective doses at multi-detector row CT and electron-beam CT. Radiology. 2003;226:145–152.

    Article  PubMed  Google Scholar 

  25. ICRP (ICoRP). The 2007 recommendations of the International Commission on Radiological Protection (ICRP Publication 103). Ann ICRP. 2007;37:1–332.

    Google Scholar 

  26. Gerber TC, Carr JJ, Arai AE, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119(7):1056–1065. epub.

    Article  PubMed  Google Scholar 

  27. Budoff MJ. Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging. 2008; PMID: 19115082.

    Google Scholar 

  28. Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol. 2002;12:1081–1086.

    Article  PubMed  Google Scholar 

  29. Trabold T, Buchgeister M, Kuttner A, et al. Estimation of radiation exposure in 16-detector row computed tomography of the heart with retrospective ECG-gating. Rofo. 2003;175:1051–1055.

    Article  PubMed  CAS  Google Scholar 

  30. Gopal A, Mao SS, Karlsberg D, et al. Radiation reduction with prospective ECG-triggering acquisition using 64-multidetector computed tomographic angiography. Int J Cardiovasc Imaging. 2009;25 (4):405–416.

    Article  PubMed  Google Scholar 

  31. Budoff MJ, Nasir K, McClelland RL, et al. Coronary calcium predicts events better with absolute calcium scores than age-gender-race percentiles – The Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol. 2009;53:345–352.

    Article  PubMed  CAS  Google Scholar 

  32. Blankenhorn DH. Coronary artery calcification: a review. Am J Med Sci. 1961;242:1–9.

    Article  Google Scholar 

  33. Breen JF, Sheedy PF, Schwartz RS, et al. Coronary artery calcification detected with ultrafast CT as an indication of coronary artery disease. Radiology. 1992;185:435–439.

    PubMed  CAS  Google Scholar 

  34. Lipton MJ, Higgins CB, Boyd DP. Computed tomography of the heart: evaluation of anatomy and function. J Am Coll Cardiol. 1985;5:555–595.

    Article  Google Scholar 

  35. Wu YW, Tadamura E, Yamamuro M, et al. Estimation of global and regional cardiac function using 64-slice computed tomography: a comparison study with echocardiography, gated-SPECT and cardiovascular magnetic resonance. Int J Cardiol. 2008;128:69–76.

    Article  PubMed  Google Scholar 

  36. Lessick J, Dragu R, Mutlak D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology. 2007;244:736–744.

    Article  PubMed  Google Scholar 

  37. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Les-perance J. Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocar-dial revascularization. Circulation. 1974;49:703–708.

    Article  PubMed  CAS  Google Scholar 

  38. Thomas AC, Daview MJ, Dilly S, Dilly N, Franc F. Potential errors in estimation of coronary arterial stenoses from clinical coronary arte-riography with reference to the shape of the coronary arterial lumen. Br Heart J. 1986;55:129–139.

    Article  PubMed  CAS  Google Scholar 

  39. Mintz GS, Painter JA, Pichard AD, et al. Atherosclerosis in angio-graphically normal coronary artery reference segments: an intravas-cular ultrasound study with clinical correlations. J Am Coll Cardiol. 1995;25:1479–1485.

    Article  PubMed  CAS  Google Scholar 

  40. Van den Broek JGM, Slump CH, Storm CJ, Van Benthem AC, Buis B. Three-dimensional densitometric reconstruction and visualization of stenosed coronary artery segments. Comput Med Imaging Graph. 1995;19:207–217.

    Article  PubMed  Google Scholar 

  41. Napel S, Rubin GD, Jeffrey RB Jr. STS-MIP: A new reconstruction technique for CT of the chest. J Comput Assist Tomogr. 1993;17(5):832–838.

    Article  PubMed  CAS  Google Scholar 

  42. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-detector row coronary computed tomographic angiography of individuals undergoing invasive coronary prospective multicenter ACCURACY (Assessment by Coronary Computed Individuals Without Known Coronary Artery Disease: Results From the Tomographic Angiography for Evaluation of Coronary Artery Stenosis in Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–1732.

    Article  PubMed  Google Scholar 

  43. Budoff MJ, Rasouli ML, Shavelle DM, et al. Cardiac CT angiography (CCTA) and nuclear myocardial perfusion imaging (MPI)-a comparison in detecting significant coronary artery disease. Acad Radiol. 2007;14(3):252–257.

    Article  PubMed  Google Scholar 

  44. Bluemke DA, Achenbach S, Budoff M, et al. Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the american heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation. 2008;118(5):586–606.

    Article  PubMed  Google Scholar 

  45. Hoffmann U, Bamberg F, Chae CU, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain - the Rule Out Myocardial Infarction using Computer Assisted Tomography (ROMICAT) trial. J Am Coll Cardiol. 2009;53(18):1642–1650.

    Article  PubMed  Google Scholar 

  46. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–1435.

    Article  PubMed  CAS  Google Scholar 

  47. Leber AW, Knez A, White CW, et al. Composition of coronary ather-osclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrast-enhanced multislice computed tomography. Am J Cardiol. 2003;91:714–718.

    Article  PubMed  Google Scholar 

  48. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance imaging with conventional angiography. N Engl J Med. 1993;328:828–832.

    Article  PubMed  CAS  Google Scholar 

  49. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J. 1993;70:315–326.

    Article  PubMed  CAS  Google Scholar 

  50. Paschal CB, Haache EM, Adler LP. Coronary arteries: three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging. 1993;3:491–501.

    Article  PubMed  CAS  Google Scholar 

  51. Duerinckx AJ, Urman MK. Two dimensional coronary MR angiog-raphy: analysis of initial clinical results. Radiology. 1994;193:731–738.

    PubMed  CAS  Google Scholar 

  52. Duerinckx AJ, Urman MK, Atkinson DJ, Simonetti OP, Sinha U, Lewis B. Limitations of MR coronary angiography. J Magn Reson Imaging. 1994;4:81.

    Google Scholar 

  53. Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Urman MK. Two-dimensional coronary MRA: limitations and artifacts. Eur Radiol. 1996;6:312–325.

    Article  PubMed  CAS  Google Scholar 

  54. Chernoff DM, Ritchie CJ, Higgins CB. Evaluation of electron beam CT coronary angiography in healthy subjects. AJR Am J Roentgenol. 1997;169:93–99.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Budoff MD, FACC, FAHA, FSCCT .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Budoff, M.J. (2010). Computed Tomography: Overview. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-650-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-650-2_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-649-6

  • Online ISBN: 978-1-84882-650-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics