Skip to main content

Mechanisms of Epigenetic Gene Silencing

  • Chapter
  • First Online:
  • 979 Accesses

Abstract

Epigenetic mechanisms are now recognized to play a crucial role in the regulation of fundamental cellular processes, and their dysregulation contributes to human diseases, most notably cancer. DNA sequences encode the primary information within the genome, but it is epigenetic modifications that provide a powerful and complex platform for accurate regulation of the genetic information and for integration of external signals. Epigenetics is therefore becoming a major field of interest to elucidate the molecular mechanisms that underlie fundamental cellular processes. At the same time, knowledge of epigenetics helps to understand the development and progression of malignancy. Human cancer has traditionally been considered primarily as a genetic disease, but recent evidence has made clear that epigenetic abnormalities play an important role in most, if not all, human malignancies; this understanding also adds further complexity to the concept of tumor development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bandi N, Zbinden S, Gugger M, et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009;69:5553-5559.

    Article  PubMed  CAS  Google Scholar 

  2. Barski A, Jothi R, Cuddapah S, et al. Chromatin poises miRNA- and protein-coding genes for expression. Genome Res. 2009;19:1742-1751.

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.

    Article  PubMed  CAS  Google Scholar 

  4. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233.

    Article  PubMed  CAS  Google Scholar 

  5. Bartels CL, Tsongalis GJ. MicroRNAs: novel biomarkers for human cancer. Clin Chem. 2009;55:623-631.

    Article  PubMed  CAS  Google Scholar 

  6. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2(Suppl 1):S4-S11.

    Article  PubMed  CAS  Google Scholar 

  7. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687-692.

    Article  PubMed  CAS  Google Scholar 

  8. Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene. 1988;74:9-12.

    Article  PubMed  CAS  Google Scholar 

  9. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9:2395-2402.

    Article  PubMed  CAS  Google Scholar 

  10. Bhaumik SR, Smith E, Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14:1008-1016.

    Article  PubMed  CAS  Google Scholar 

  11. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209-213.

    Article  PubMed  CAS  Google Scholar 

  12. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6-21.

    Article  PubMed  CAS  Google Scholar 

  13. Bird AP, Wolffe AP. Methylation-induced repression – belts, braces, and chromatin. Cell. 1999;99:451-454.

    Article  PubMed  CAS  Google Scholar 

  14. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097-1101.

    Article  PubMed  CAS  Google Scholar 

  15. Cairns BR. The logic of chromatin architecture and remodelling at promoters. Nature. 2009;461:193-198.

    Article  PubMed  CAS  Google Scholar 

  16. Calvisi DF, Ladu S, Gorden A, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest. 2007;117:2713-2722.

    Article  PubMed  CAS  Google Scholar 

  17. Cang S, Feng J, Konno S, et al. Deficient histone acetylation and excessive deacetylase activity as epigenomic marks of prostate cancer cells. Int J Oncol. 2009;35:1417-1422.

    PubMed  CAS  Google Scholar 

  18. Caterino TL, Hayes JJ. Chromatin structure depends on what’s in the nucleosome’s pocket. Nat Struct Mol Biol. 2007;14:1056-1058.

    Article  PubMed  CAS  Google Scholar 

  19. Chen T, Ueda Y, Dodge JE, Wang Z, Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 2003;23:5594-5605.

    Article  PubMed  CAS  Google Scholar 

  20. Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995;10:20-27.

    Article  PubMed  CAS  Google Scholar 

  21. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93-124.

    Article  PubMed  CAS  Google Scholar 

  22. Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA. 2007;104:4676-4681.

    Article  PubMed  CAS  Google Scholar 

  23. Edwards CA, Ferguson-Smith AC. Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol. 2007;19:281-289.

    Article  PubMed  CAS  Google Scholar 

  24. Elgin SC, Grewal SI. Heterochromatin: silence is golden. Curr Biol. 2003;13:R895-R898.

    Article  PubMed  CAS  Google Scholar 

  25. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132:9-14.

    Article  PubMed  CAS  Google Scholar 

  26. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007;104:15805-15810.

    Article  PubMed  CAS  Google Scholar 

  27. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21-33.

    Article  PubMed  CAS  Google Scholar 

  28. Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003;31:2305-2312.

    Article  PubMed  CAS  Google Scholar 

  29. Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem. 2003;278:4035-4040.

    Article  PubMed  CAS  Google Scholar 

  30. Gartel AL, Kandel ES. RNA interference in cancer. Biomol Eng. 2006;23:17-34.

    Article  PubMed  CAS  Google Scholar 

  31. Gilbert N, Boyle S, Fiegler H, Woodfine K, Carter NP, Bickmore WA. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell. 2004;118:555-566.

    Article  PubMed  CAS  Google Scholar 

  32. Goll MG, Kirpekar F, Maggert KA, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395-398.

    Article  PubMed  CAS  Google Scholar 

  33. Goyal R, Reinhardt R, Jeltsch A. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase. Nucleic Acids Res. 2006;34:1182-1188.

    Article  PubMed  CAS  Google Scholar 

  34. Grandjean V, O’Neill L, Sado T, Turner B, Ferguson-Smith A. Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2-H19 domain. FEBS Lett. 2001;488:165-169.

    Article  PubMed  CAS  Google Scholar 

  35. Gregory RI, Yan KP, Amuthan G, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235-240.

    Article  PubMed  CAS  Google Scholar 

  36. Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. APMIS. 2007;115:1039-1059.

    Article  PubMed  Google Scholar 

  37. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha–DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016-3027.

    Article  PubMed  CAS  Google Scholar 

  38. Han J, Lee Y, Yeom KH, et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell. 2006;125:887-901.

    Article  PubMed  CAS  Google Scholar 

  39. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development. 2002;129:1983-1993.

    PubMed  CAS  Google Scholar 

  40. Herceg Z. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis. 2007;22:91-103.

    Article  PubMed  CAS  Google Scholar 

  41. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol. 2007;1:26-41.

    Article  PubMed  CAS  Google Scholar 

  42. Iguchi-Ariga SM, Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989;3:612-619.

    Article  PubMed  CAS  Google Scholar 

  43. Issa JP. CpG island methylator phenotype in cancer. Nat Rev Cancer. 2004;4:988-993.

    Article  PubMed  CAS  Google Scholar 

  44. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245-254.

    Article  PubMed  CAS  Google Scholar 

  45. Jeltsch A, Nellen W, Lyko F. Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci. 2006;31:306-308.

    Article  PubMed  CAS  Google Scholar 

  46. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253-262.

    Article  PubMed  CAS  Google Scholar 

  47. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187-191.

    Article  PubMed  CAS  Google Scholar 

  48. Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene. 2006;25:6176-6187.

    Article  PubMed  CAS  Google Scholar 

  49. Jurkowski TP, Meusburger M, Phalke S, et al. Human DNMT2 methylates tRNA(Asp) molecules using a DNA methyltransferase-like catalytic mechanism. RNA. 2008;14:1663-1670.

    Article  PubMed  CAS  Google Scholar 

  50. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900-903.

    Article  PubMed  CAS  Google Scholar 

  51. Kato Y, Kaneda M, Hata K, et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet. 2007;16:2272-2280.

    Article  PubMed  CAS  Google Scholar 

  52. Keohane AM, O’Neill LP, Belyaev ND, Lavender JS, Turner BM. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol. 1996;180:618-630.

    Article  PubMed  CAS  Google Scholar 

  53. Koerner MV, Pauler FM, Huang R, Barlow DP. The function of non-coding RNAs in genomic imprinting. Development. 2009;136:1771-1783.

    Article  PubMed  CAS  Google Scholar 

  54. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693-705.

    Article  PubMed  CAS  Google Scholar 

  55. Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis. 2004;38:32-38.

    Article  PubMed  CAS  Google Scholar 

  56. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051-4060.

    Article  PubMed  CAS  Google Scholar 

  57. Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003;13:1192-1200.

    Article  PubMed  CAS  Google Scholar 

  58. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993;366:362-365.

    Article  PubMed  CAS  Google Scholar 

  59. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992;69:915-926.

    Article  PubMed  CAS  Google Scholar 

  60. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res. 2004;32:598-610.

    Article  PubMed  CAS  Google Scholar 

  61. Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315-322.

    Article  PubMed  CAS  Google Scholar 

  62. Liu M, Wu H, Liu T, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19:828-837.

    Article  PubMed  CAS  Google Scholar 

  63. Loh YH, Zhang W, Chen X, George J, Ng HH. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21:2545-2557.

    Article  PubMed  CAS  Google Scholar 

  64. Lucchesi JC, Kelly WG, Panning B. Chromatin remodeling in dosage compensation. Annu Rev Genet. 2005;39:615-651.

    Article  PubMed  CAS  Google Scholar 

  65. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251-260.

    Article  PubMed  CAS  Google Scholar 

  66. Lujambio A, Esteller M. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle. 2007;6:1455-1459.

    Article  PubMed  CAS  Google Scholar 

  67. Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67:1424-1429.

    Article  PubMed  CAS  Google Scholar 

  68. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372-373.

    Article  PubMed  CAS  Google Scholar 

  69. Marmorstein R, Roth SY. Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev. 2001;11:155-161.

    Article  PubMed  CAS  Google Scholar 

  70. Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673-684.

    Article  PubMed  CAS  Google Scholar 

  71. Meehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992;20:5085-5092.

    Article  PubMed  CAS  Google Scholar 

  72. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15:185-197.

    Article  PubMed  CAS  Google Scholar 

  73. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol. 2006;7:540-546.

    Article  PubMed  CAS  Google Scholar 

  74. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell. 2006;10:105-116.

    Article  PubMed  CAS  Google Scholar 

  75. Mutskov VJ, Farrell CM, Wade PA, Wolffe AP, Felsenfeld G. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 2002;16:1540-1554.

    Article  PubMed  CAS  Google Scholar 

  76. Mutskov V, Felsenfeld G. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9. EMBO J. 2004;23:138-149.

    Article  PubMed  CAS  Google Scholar 

  77. Nan X, Cross S, Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp. 1998;214:6-16. discussion 16–21, 46–50.

    PubMed  CAS  Google Scholar 

  78. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386-389.

    Article  PubMed  CAS  Google Scholar 

  79. Ng K, Pullirsch D, Leeb M, Wutz A. Xist and the order of silencing. EMBO Rep. 2007;8:34-39.

    Article  PubMed  CAS  Google Scholar 

  80. Nimmo RA, Slack FJ. An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma. 2009;118(4):405-418.

    Article  PubMed  CAS  Google Scholar 

  81. Niwa H. Open conformation chromatin and pluripotency. Genes Dev. 2007;21:2671-2676.

    Article  PubMed  CAS  Google Scholar 

  82. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247-257.

    Article  PubMed  CAS  Google Scholar 

  83. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219-220.

    Article  PubMed  CAS  Google Scholar 

  84. Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42-49.

    Article  PubMed  CAS  Google Scholar 

  85. Pandey AK, Agarwal P, Kaur K, Datta M. MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem. 2009;23:221-232.

    Article  PubMed  CAS  Google Scholar 

  86. Payer B, Lee JT. X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet. 2008;42:733-772.

    Article  PubMed  CAS  Google Scholar 

  87. Pekarsky Y, Santanam U, Cimmino A, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66:11590-11593.

    Article  PubMed  CAS  Google Scholar 

  88. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180:5689-5698.

    PubMed  CAS  Google Scholar 

  89. Pfeifer K. Mechanisms of genomic imprinting. Am J Hum Genet. 2000;67:777-787.

    Article  PubMed  CAS  Google Scholar 

  90. Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002-33010.

    Article  PubMed  CAS  Google Scholar 

  91. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA. 2000;97:5237-5242.

    Article  PubMed  CAS  Google Scholar 

  92. Razin A. CpG methylation, chromatin structure and gene silencing – a three-way connection. EMBO J. 1998;17:4905-4908.

    Article  PubMed  CAS  Google Scholar 

  93. Rea S, Eisenhaber F, O’Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000;406:593-599.

    Article  PubMed  CAS  Google Scholar 

  94. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425-432.

    Article  PubMed  CAS  Google Scholar 

  95. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089-1093.

    Article  PubMed  CAS  Google Scholar 

  96. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2:21-32.

    Article  PubMed  CAS  Google Scholar 

  97. Rice JC, Futscher BW. Transcriptional repression of BRCA1 by aberrant cytosine methylation, histone hypoacetylation and chromatin condensation of the BRCA1 promoter. Nucleic Acids Res. 2000;28:3233-3239.

    Article  PubMed  CAS  Google Scholar 

  98. Richards EJ, Elgin SC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell. 2002;108:489-500.

    Article  PubMed  CAS  Google Scholar 

  99. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1:19-25.

    Article  PubMed  CAS  Google Scholar 

  100. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81-120.

    Article  PubMed  CAS  Google Scholar 

  101. Rountree MR, Bachman KE, Herman JG, Baylin SB. DNA methylation, chromatin inheritance, and cancer. Oncogene. 2001;20:3156-3165.

    Article  PubMed  CAS  Google Scholar 

  102. Royo H, Bortolin ML, Seitz H, Cavaille J. Small non-coding RNAs and genomic imprinting. Cytogenet Genome Res. 2006;113:99-108.

    Article  PubMed  CAS  Google Scholar 

  103. Royo H, Cavaille J. Non-coding RNAs in imprinted gene clusters. Biol Cell. 2008;100:149-166.

    Article  PubMed  CAS  Google Scholar 

  104. Sawan C, Vaissiere T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642:1-13.

    Article  PubMed  CAS  Google Scholar 

  105. Schaefer M, Hagemann S, Hanna K, Lyko F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res. 2009;69:8127-8132.

    Article  PubMed  CAS  Google Scholar 

  106. Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma. 2009;119:35-40.

    Article  CAS  Google Scholar 

  107. Shen L, Ahuja N, Shen Y, et al. DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst. 2002;94:755-761.

    Article  PubMed  CAS  Google Scholar 

  108. Strunnikova M, Schagdarsurengin U, Kehlen A, Garbe JC, Stampfer MR, Dammann R. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol. 2005;25:3923-3933.

    Article  PubMed  CAS  Google Scholar 

  109. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279:27816-27823.

    Article  PubMed  CAS  Google Scholar 

  110. Suzuki K, Suzuki I, Leodolter A, et al. Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell. 2006;9:199-207.

    Article  PubMed  CAS  Google Scholar 

  111. Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414:277-283.

    Article  PubMed  CAS  Google Scholar 

  112. Thakur N, Tiwari VK, Thomassin H, et al. An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol. 2004;24:7855-7862.

    Article  PubMed  CAS  Google Scholar 

  113. Thornhill AR, Burgoyne PS. A paternally imprinted X chromosome retards the development of the early mouse embryo. Development. 1993;118:171-174.

    PubMed  CAS  Google Scholar 

  114. Tycko B. Epigenetic gene silencing in cancer. J Clin Invest. 2000;105:401-407.

    Article  PubMed  CAS  Google Scholar 

  115. Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008;659:40-48.

    Article  PubMed  CAS  Google Scholar 

  116. Vakoc CR, Sachdeva MM, Wang H, Blobel GA. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol. 2006;26:9185-9195.

    Article  PubMed  CAS  Google Scholar 

  117. van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet. 1999;23:474-478.

    Article  PubMed  CAS  Google Scholar 

  118. Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871-874.

    Article  PubMed  CAS  Google Scholar 

  119. Vu TH, Jirtle RL, Hoffman AR. Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene. Cytogenet Genome Res. 2006;113:202-208.

    Article  PubMed  CAS  Google Scholar 

  120. Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4:e5889.

    Article  PubMed  CAS  Google Scholar 

  121. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228-234.

    Article  PubMed  CAS  Google Scholar 

  122. Wutz A, Gribnau J. X inactivation Xplained. Curr Opin Genet Dev. 2007;17:387-393.

    Article  PubMed  CAS  Google Scholar 

  123. Xia H, Qi Y, Ng SS, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380:205-210.

    Article  PubMed  CAS  Google Scholar 

  124. Xie ZH, Huang YN, Chen ZX, et al. Mutations in DNA methyltransferase DNMT3B in ICF syndrome affect its regulation by DNMT3L. Hum Mol Genet. 2006;15:1375-1385.

    Article  PubMed  CAS  Google Scholar 

  125. Yang B, Guo M, Herman JG, Clark DP. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol. 2003;163:1101-1107.

    Article  PubMed  CAS  Google Scholar 

  126. Zardo G, Fazi F, Travaglini L, Nervi C. Dynamic and reversibility of heterochromatic gene silencing in human disease. Cell Res. 2005;15:679-690.

    Article  PubMed  CAS  Google Scholar 

  127. Zhou J, Fan JY, Rangasamy D, Tremethick DJ. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol. 2007;14:1070-1076.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Pierre Lambert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Lambert, MP., Herceg, Z. (2011). Mechanisms of Epigenetic Gene Silencing. In: Roach, H., Bronner, F., Oreffo, R. (eds) Epigenetic Aspects of Chronic Diseases. Springer, London. https://doi.org/10.1007/978-1-84882-644-1_3

Download citation

Publish with us

Policies and ethics