Skip to main content

Optical Components from Mesoporous Silicon

  • Chapter
Porous Semiconductors

Part of the book series: Engineering Materials and Processes ((EMP))

  • 880 Accesses

Abstract

Porous silicon with pore sizes below the wavelength of the light in the micro-, meso, or lower macropore region (in what follows always addressed as “mesoporous”) offers the opportunity to “engineer” the refractive index at the visible and the IR spectral range by variations of the porosity of the layer. This property can be utilized in a number of optical components. Note that the luminescence properties of microporous silicon [1] will not be considered here. Reflective type of optical filters, or mirrors based on mesoporous silicon superlattices were proposed first by G. Vincent over a decade ago [2]. In this paper porous silicon super-lattices (roughly two microns thick) were etched on p-doped (100) oriented (8–15) Ωcm wafer; the porous layer was microporous silicon. The porosity and the concomitant refractive index modulations were formed by modulating the applied current density during the electrochemical etching. Independently, a similar approach was demonstrated by another group at the same year [3,4]. In [3] it was shown that in addition to modulating the current density porous silicon superlattices could also be formed by anodization of substrates with layers of different doping concentrations or different compositions at constant current density. Since then a large number of papers was published with respect to (meso)porous silicon filters and mirrors. Porous silicon filters were proposed to be used in color-sensitive photodiodes [5], luminescent devices [4], sensors [6–11]. A detailed review of these activities can be found in [12]. In this chapter we will review filter applications of mesoporous silicon. Particularly, we will focus on mesoporous silicon filters for the mid to far infrared region (light with wavelengths above 3 μm), where the advantages of the mesoporous silicon technology are most promising. We will start with brief description of optical filters in general, will briefly review far IR mesoporous filters and will then address one of the most challenging problems for this technology – environmental instability problem and the ways to mitigate this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canham LT, (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57: 1046–1048.

    Article  Google Scholar 

  2. Vincent G, (1994) Optical properties of porous silicon superlattices. Appl. Phys. Lett. 64:2367–2379.

    Article  Google Scholar 

  3. Berger MG, Dieker C, Thoenissen M, Vescan L, Lueth H, Muender H, Theiss W, Wernke M, Grosse P, (1994) Porosity superlattices: A new class of Si heterostructures. J. Phys. D. 27: 1333–1336.

    Article  Google Scholar 

  4. Frohnhoff S, Berger MG, (1994) Porous silicon superlattices. Adv. Mat. 6: 963–965.

    Article  Google Scholar 

  5. Krueger M, Berger MG, Marso M, Reetz W, Eickhoff T, Loo R, Vescan L, Thönissen M, Lüth H, Arens-Fischer R, Hilbrich S, Theiss W, (1997) Color-sensitive Siphotodiode using porous silicon interference filters. Jpn. J. Appl. Phys. 36: L24.

    Google Scholar 

  6. Sailor MJ, (1997) Sensor application of porous silicon, in: L.T. Canham (Ed.), Properties of Porous Silicon, IEE-Books, London.

    Google Scholar 

  7. Lauerhaas JM, Credo GM, Heinrich JL, Sailor MJ, (1992) Reversible Luminescence Quenching of Porous Si by Solvents. J. Am. Chem. Soc. 114:1911–1912.

    Article  Google Scholar 

  8. Sailor MJ, Credo G, Heinrich J, Lauerhaas JM, (1994) Method for Detection of Chemicals by Reversible Quenching of Silicon Photoluminescence. U.S. Patent 5,338,415.

    Google Scholar 

  9. Lin VS-Y, Motesharei K, Dancil KS, Sailor MJ, Ghadiri MR, (1997) A Porous Silicon Based Optical Interferometric Biosensor. Science 278:840–843.

    Article  Google Scholar 

  10. Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ, (2002) Biomolecular screening with encoded porous-silicon photonic crystals. Nat.Mat. 1:39–41.

    Article  Google Scholar 

  11. Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ, (2003) Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications. Science 299:2045–2047.

    Article  Google Scholar 

  12. Pavesi L, (1997) Riv. Nuovo Cimento 20:1–76.

    Google Scholar 

  13. Cox JT, Haas G, (1958) Antireflection Coatings for Germanium and Silicon in the Infrared J., Opt. Soc. Am., 48:677–678.

    Article  Google Scholar 

  14. Matic Z, Bilyalov RR, Poortmans J, (2000) Firing through Porous Silicon Antireflection Coating for Silicon Solar Cells. physica status solidi (RRL) – Rapid Research Letters, 182:457–460.

    Google Scholar 

  15. Lipinski M, Bastide S, Panek P, Lévy-Clément C, (2003) Porous silicon antireflection coating by electrochemical and chemical etching for silicon solar cell manufacturing. physica status solidi (a) 197:512–517.

    Article  Google Scholar 

  16. Kochergin V, (2003) Omnidirectional Optical Filters. Kluwer Academic Publishers, Boston, ISBN 1-4020-7386-0.

    Google Scholar 

  17. Macleod H.A., Thin-Film Optical Filters, 3rd ed., Institute of Physics Publishing, 2001.

    Google Scholar 

  18. Striemer CC, Fauchet PM, (2002), Dynamic Etching Of Silicon For Broadband Antireflection Applications. Appl. Phys. Lett. 81:2980–2982.

    Article  Google Scholar 

  19. Aroutiounian VM, Martirosyan KS, Hovhannisyan AS, Soukiassian PG, (2008), Use of porous silicon for double- and triple-layer antireflection coatings in silicon photovoltaic converters. J. of Contemporary Physics C, 43:72–76.

    Google Scholar 

  20. Yeh P., Optical Waves in Layered Media, John Wiley & Sons, 1988.

    Google Scholar 

  21. Heavens OS, Liddel HM, (1966) Staggered Broad-Band Reflecting Multilayers. Appl. Opt., 5:373–376.

    Article  Google Scholar 

  22. Turner AF, Baumeister PW, (1966) Multilayer Mirrors with High Reflectance Over an Extended Spectral Region. Appl. Opt., 5:69–76.

    Article  Google Scholar 

  23. Chan S, Fauchet PM (1999), Silicon Interference Filters And Bragg Reflectors For Active And Passive Integrated Optoelectronic Components. Proc. SPIE, 3630:144–154.

    Article  Google Scholar 

  24. Chan S, Tsybeskov L, Fauchet PM, (1999) Porous Silicon Multilayer Mirrors And Microcavity Resonators For Optoelectronic Applications. Mat. Res. Soc. Symp. Proc. 536, 117–122.

    Google Scholar 

  25. Agarwal V, del Rio JA, (2003), Tailoring the photonic band gap of a porous silicon dielectric mirror. Appl. Phys. Lett. 82:1512–1514.

    Article  Google Scholar 

  26. Lugo JE, Lopez HA, Chan S, Fauchet PM, (2002), Porous silicon multilayer structures: a photonic band gap analysis. J. Appl. Phys. 91:4966–4972.

    Article  Google Scholar 

  27. Zheng WH, Reece P, Sun BQ, Gal M, (2004) Broadband laser mirrors made from porous silicon. Appl. Phys. Lett. 84:3519–3521.

    Article  Google Scholar 

  28. Hunkel D, Butz R, Ares-Fisher R, Marso M, H. Lüth H, (1998), Interference filters from porous silicon with laterally varying wavelength of reflection. J. of Luminescence, 80:133–136.

    Article  Google Scholar 

  29. Weiss SM, Haurylau M, Fauchet PM (2003), Tunable Porous Silicon Mirrors for Optoelectronic Applications. Mat. Res. Soc. Symp. Proc. 737:529–534.

    Google Scholar 

  30. Weiss SM, Fauchet PM (2003), Electrically Tunable Porous Silicon Active Mirrors. Phys. Stat. Sol. (a) 197:556–560.

    Article  Google Scholar 

  31. Song D, Tokranova N, Gracias A, Castracane J, (2008) New approaches for chip-tochip interconnects: integrating porous silicon with MOEMS. J. Micro/Nanolith. MEMS MOEMS 7:021013.

    Google Scholar 

  32. Pavesi L, Mazzoleni C, Tredicucci A, Pellegrini V, (1994), Controlled photon emission in porous silicon microcavities Appl. Phys. Lett. 67:3280–3282.

    Google Scholar 

  33. Chan S, Fauchet PM, (2001) Silicon microcavity light emitting devices. Opt. Mater. 17:31–34.

    Article  Google Scholar 

  34. Reece PJ, Lerondel G, Zheng WH, Gal M, (2002) Optical microcavities with subnanometer linewidths based on porous silicon. Appl. Phys. Lett. 81:4895–4897.

    Article  Google Scholar 

  35. Ghulinyan M, Oton CJ, Bonetti G, Gaburro Z, Pavesi L, (2003) Free-standing porous silicon single and multiple optical cavities. J. of Appl Phys. 93:9724–9729.

    Article  Google Scholar 

  36. Kochergin V, Sanghavi M, Swinehart PR, (2005), Porous silicon filters for lowtemperature far IR applications. Proc. SPIE 5883:184–191.

    Google Scholar 

  37. McGovern WR, Kochergin V, Sanghavi MR, Swinehart PR, (2006) Porous silicon optical filters for far-IR and low-temperature applications, Proc. Great Lakes Photonics Symposium.

    Google Scholar 

  38. Sugiyama H, Nittono O, (1990) Microstructure and lattice distortion of anodized porous silicon layers. J. Crystal Growth 103:156–163.

    Article  Google Scholar 

  39. Bomchil G, Halimaoui A, Herino R, (1988) Porous silicon: the material and its application to SOI technologies. Microelectronic Eng. 8:293–310.

    Article  Google Scholar 

  40. Krüger M, Hilbrich S, Thönissen M, Scheyen D, Theiß W, Lüth H, (1998) Suppression of ageing effects in porous silicon interference filters. Optics Communications 146:309–315.

    Article  Google Scholar 

  41. Timoshenko VY, Dittrich Th, Lysenko V, Lisachenko MG, Koch F, (2001) Free charge carriers in mesoporous silicon. Phys. Rev. B 64:085314.

    Article  Google Scholar 

  42. Kochergin V, Föll H, (2006) Novel optical elements made from porous silicon. Review Materials Science and Engineering R, 52:93–140.

    Article  Google Scholar 

  43. Buriak JM, (2002) Organometallic Chemistry on Silicon and Germanium Surfaces. Chemical Reviews 102:1271–1308.

    Article  Google Scholar 

  44. Buriak JM, Allen MJ, (1999) Photoluminescence of Porous Silicon Surfaces Stabilized Through Lewis Acid Mediated Hydrosilylation. J. Lumin. 80:29–35.

    Article  Google Scholar 

  45. Buriak JM, Stewart MP, Allen MJ, (1998) Hydrosilylation Reactions on Porous Silicon Surfaces. Mater. Res. Soc. Symp. Proc. 536:173–178.

    Google Scholar 

  46. Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized Mesoporous Silicon With Dramatically Improved Stability in Simulated Human Blood Plasma. Advanced Materials 11:1505–1509.

    Article  Google Scholar 

  47. Robins EG, Stewart MP, Buriak JM, (1999) Anodic and Cathodic Electrografting of Alkynes on Porous Silicon. J. Chem. Soc., Chem. Commun., 2479–2480.

    Google Scholar 

  48. Lees IN, Lin H, Canaria CA, Gurtner C, Sailor MJ, Miskelly GM, (2003) Chemical Stability of Porous Silicon Surfaces Electrochemically Modified with Functional Alkyl Species. Langmuir, 19:9812–9817.

    Article  Google Scholar 

  49. Sato N, (2003) Semiconductor Substrate and method for producing the same. U.S. Patent 6,593,211.

    Google Scholar 

  50. Sato N, (2002) Method and apparatus for etching a semiconductor article and method of preparing a semiconductor article by using the same. U.S. Patent 6,413,874.

    Google Scholar 

  51. Müller G, Brendel R, (2000) Simulated annealing of porous silicon. phys. stat. sol. (a) 182:313–318.

    Article  Google Scholar 

  52. Müller G, Nerding N, Ott N, Strunk HP, Brendel R, (2003) Sintering of porous silicon. phys. stat. sol. (a) 197:83–87.

    Article  Google Scholar 

  53. Corban R, Bousack H, Bohn HG, (2003) Protective coatings for interference filters made of porous silicon. phys. stat. sol. (a) 197:370–373.

    Article  Google Scholar 

  54. Christophersen M, Kochergin V, Swinehart PR, (2004) Macroporous Silicon filters for mid-to-far IR range. Proc. SPIE 5524:158–168.

    Article  Google Scholar 

  55. Gösele U, Tong Q-Y, (1998), Semiconductor wafer bonding. Annual Review of Materials Science, 28:215–241.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Optical Components from Mesoporous Silicon. In: Porous Semiconductors. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-578-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-578-9_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-577-2

  • Online ISBN: 978-1-84882-578-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics