Skip to main content

Subwavelength Approach of Light Propagation Through Porous Semiconductors

  • Chapter
Porous Semiconductors

Part of the book series: Engineering Materials and Processes ((EMP))

  • 858 Accesses

Abstract

Porous semiconductors with pore sizes below the wavelength of the light offers the opportunity to “engineer” the refractive index at the visible and the IR spectral range by variations of the porosity of the layer. This property can be utilized in a number of optical components [1–3] that will be reviewed later in this book. Note that the luminescence properties of microporous silicon [4] will not be considered here. A lot of research has been dedicated previously to this particular optical use of porous Si and less to other semiconductor materials. This chapter of the book is devoted to the description of the subwavelength mode of light propagation through porous semiconductors, where the porous semiconductors optically can be considered as effective media. The emphasis is placed on a description of different models, connecting the expected optical properties of porous semiconductors with pore morphology and geometry. Good understanding of the properties of porous semiconductors is essential for two reasons: First, it is necessary for accurate design of mesoporous silicon filters that will be reviewed in Chapter 6. Second, it provides the way for simple and relatively fast identification of some parameters of the morphology of porous semiconductor layers without the need of otherwise inevitable TEM imaging. Review of isotropic effective medium approaches will be given first in this chapter, followed by introduction of anisotropic effective medium models. Last, predictions of some unusual optical properties of certain porous semiconductor materials will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincent G, (1994) Optical properties of porous silicon superlattices. Appl. Phys. Lett. 64:2367–2369.

    Article  Google Scholar 

  2. Pellegrini V, Tredicucci A, Mazzoleni C, Pavesi L, (1995) Enhanced optical properties in porous silicon microcavities. Phys. Rev. B 52:R14328.

    Google Scholar 

  3. Diener J, Künzner N, Kovalev D, Gross E, Timoshenko VY, Polisski G, Koch F, (2001) Dichroic Bragg reflectors based on birefringent porous silicon. Appl. Phys. Lett. 78:3887–3889.

    Article  Google Scholar 

  4. Canham LT, (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57:1046–1048.

    Article  Google Scholar 

  5. Beale MIJ, Benjamin JD, Uren MJ, Chew NG, Cullis AG, (1985) An experimental and theoretical-study of the formation and microstructure of porous silicon. J. Cryst. Growth, 73:622–636.

    Article  Google Scholar 

  6. Pickering C, Beale MIJ, Robbins DJ, Pearson PJ, Greef R, (1985) Optical-properties of porous silicon films. Thin Solid Films, 125:157–163.

    Article  Google Scholar 

  7. Bergman DJ, (1978) Dielectric-constant of a composite-material – problem in classical physics. Phys. Rep., 43:378–407.

    Article  MathSciNet  Google Scholar 

  8. Maxwell Garnett JC, (1904) Colours in Metal Glasses and in Metallic Films. Philos. Trans. R. Soc. London, 203:385–420.

    Article  Google Scholar 

  9. Looyenga H, (1965) Dielectric constants of heterogeneous mixtures. Physica, 31:401–406.

    Article  Google Scholar 

  10. Bruggemann DAG, (1935), Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. Ann. Phys., 24:636.

    Article  Google Scholar 

  11. Setzu S, Lerondel G, Romestain R, (1998) Temperature effect on the roughness of the formation interface of p-type porous silicon. J. Appl. Phys., 84:3129–3134.

    Article  Google Scholar 

  12. Theiß W, (1997) Optical properties of porous silicon. Surf. Sci. Rep., 29:95–192.

    Article  Google Scholar 

  13. Theiß W, Hilbrich S, (1997) Refractive index of porous silicon. In L Canham, editor, Properties of Porous Silicon, volume 18 of Emis Datareviews Series, page 223. INSPEC, IEE, London, United Kingdom.

    Google Scholar 

  14. Aspnes DE, Theeten JB, (1979) Investigation of effective-medium models of microscopic surface-roughness by spectroscopic ellipsometry. Phys. Rev. B, 20:3292.

    Article  Google Scholar 

  15. Squire EK, Snow PA, Russell PS, Canham LT, Simons AJ, Reeves CL, (1998) Light emission from porous silicon single and multiple cavities. J. Lumin., 80:125–128.

    Article  Google Scholar 

  16. Reece PJ, Lerondel G, Zheng WH, Gal M, (2002) Optical microcavities with subnanometer linewidths based on porous silicon. Appl. Phys. Lett., 81:4895–4897.

    Article  Google Scholar 

  17. Kovalev D, Polisski G, Diener J, Heckler H, Künzner N, Timoshenko VYu, Koch F, (2001) Strong in-plane birefringence of spatially nanostructured silicon. Appl. Phys. Lett. 78:916–918.

    Article  Google Scholar 

  18. Diener J, Künzner N, Kovalev D, Gross E, Koch F, (2002) Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon. J. Appl. Phys. 91:6704–6708.

    Article  Google Scholar 

  19. Diener J, Künzner v, Gross E, Kovalev D, Fujii M, (2004) Planar silicon-based light polarizers. Opt. Lett. 29:195–197.

    Article  Google Scholar 

  20. Wu QH, De Silva L, Arnold M, Hodgkinson IJ, Takeuchi E, (2004) All-silicon polarizing filters for near-infrared wavelengths. J. Appl. Phys. 95:402–405.

    Article  Google Scholar 

  21. Bruggemann DAG, (1935), Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. Ann. Phys., 24:636.

    Article  Google Scholar 

  22. Zettner J, Thoenissen M, Hierl Th, Brendel R, Schulz M, (1999) Novel porous silicon backside light reflector for thin silicon solar cells. Progress in Photovoltaics: Research and Applications 6:423–432.

    Article  Google Scholar 

  23. Kochergin V, Christophersen M, Föll H, (2004) Effective Medium Approach for Calculations of Optical Anisotropy in Porous Materials. Appl. Phys. B, 79:731–739.

    Article  Google Scholar 

  24. Yaghjian AD, (1980) Electric Dyadic Green's Functions in the Source Region. Proc. IEEE, 68:248–263.

    Article  Google Scholar 

  25. Maldovan M, Bockstaller MR, Thomas EL, Carter WC, (2003) Validation of the effective-medium approximation for the dielectric permittivity of oriented nanoparticle-filled materials: effective permittivity for dielectric nanoparticles in multilayer photonic composites. Appl. Phys. B 76:877–884.

    Article  Google Scholar 

  26. Sihvola A, Lindell IV, (1992) Polarizability Modeling of Heterogeneous Media (In: Progress in Electromagnetics Research, Vol. 6) edited by Priou, A., Elsevier Science Publ Co New York 1992, 101–151.

    Google Scholar 

  27. Cullis AG, Canham LT, Calcott PDJ, (1997) The structural and luminescence properties of porous silicon. J. Appl. Phys., 82:909–912.

    Article  Google Scholar 

  28. Lehmann V, Stengl R, Luigart A, (2000) On the morphology and the electrochemical formation mechanism of mesoporous silicon. Materials science and engineering B, 69:11–22.

    Article  Google Scholar 

  29. Faivre C, Bellet D, (1999) Structural properties of p+-type porous silicon layers versus the substrate orientation: an X-ray diffraction comparative study. J. Appl. Cryst. 32:1134–1144.

    Article  Google Scholar 

  30. Yariv A,Yeh P, Optical Waves in Crystals, Wiley, 1984.

    Google Scholar 

  31. Föll H, Langa S, Carstensen J, Christophersen M, Tiginyanu IM, (2003) Review: Pores in III-V Semiconductors. Adv. Materials, 15:183–198.

    Article  Google Scholar 

  32. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Föll H, (2000) Formation of porous layers with different morphologies during anodic etching of n-InP. J. Electrochem. Soc. Lett., 3:514–516.

    Article  Google Scholar 

  33. Föll H, Carstensen J, Langa S, Christophersen M,Tiginyanu IM (2003) Porous III-V compound semiconductors: formation, properties and comparison to silicon. Phys. Stat. Sol. A 197:61–70.

    Article  Google Scholar 

  34. Erne BH, Vanmaekelbergh D, Kelly JJ., (1996) Morphology and Strongly Enhanced Photoresponse of GaP Electrodes Made Porous by Anodic Etching. J. Electrochem. Soc., 143:305–314.

    Article  Google Scholar 

  35. Kochergin V, Christophersen M, Föll H, (2005) Adjustable optical anisotropy in porous GaAs. Appl. Phys. Lett., 86:042108.

    Article  Google Scholar 

  36. Langa S, Carstensen J, Christophersen M, Föll H, Tiginyanu IM, (2001) Observation of crossing pores in anodically etched n-GaAs. Appl. Phys. Lett., 78:1074–1076.

    Article  Google Scholar 

  37. Landau LD, Lifshits EM, (1984) Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinenann, Oxford.

    Google Scholar 

  38. Schmuki P, Erickson LE, (1998) Direct micropatterning of Si and GaAs using electrochemical development of focused ion beam implants. Appl. Phys. Lett., 73:2600–2602.

    Article  Google Scholar 

  39. Schmuki P, Lockwood DJ, Labbe HJ, Fraser JW, (1996) Visible photoluminescence from porous GaAs. Appl. Phys. Lett., 69:1620–1622.

    Article  Google Scholar 

  40. Föll H, Langa S, Carstensen J, Lölkes S, Christophersen M, Tiginyanu IM, (2003) Engineering Porous III-Vs. III-Vs Review, 16:42–43.

    Google Scholar 

  41. Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister H, Gösele U, (2002) Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91:3243–3249.

    Article  Google Scholar 

  42. Matthias S, Schilling J, Nielsch K, Müller F, Wehrspohn RB, Gösele U, (2002) Monodisperse Diameter-Modulated Gold Microwires. Adv. Mater. 14:1618–1621.

    Article  Google Scholar 

  43. Kuwata H, Tamaru H, Esumi K, Miyaho K, (2003) Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation. Appl. Phys. Lett. 83:4625–4627.

    Article  Google Scholar 

  44. Moskovits M, (1985) Surface-enhanced spectroscopy. Reviews of Modern Physics, 57:783–826.

    Article  Google Scholar 

  45. Kochergin V, Christophersen M, Föll H, (2005) Surface Plasmon Enhancement of an Optical Anisotropy in Porous Silicon/Metal Composite. Appl. Phys. B., 80:81–87.

    Article  Google Scholar 

  46. (1998) Properties of Porous Silicon Edited by Leigh Canham, IEE Publishing.

    Google Scholar 

  47. Smith DR, Schurig D, (2003) Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors. Phys. Rev. Lett., 90:77405.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2009). Subwavelength Approach of Light Propagation Through Porous Semiconductors. In: Porous Semiconductors. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84882-578-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-578-9_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-577-2

  • Online ISBN: 978-1-84882-578-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics