Skip to main content

Synchronizing Chaotic Systems Based on Fuzzy Models

  • Chapter
Controlling Chaos

Part of the book series: Communications and Control Engineering ((CCE))

  • 1171 Accesses

Abstract

A motivation for using fuzzy systems and fuzzy control stems in part from the fact that they are particularly suitable for industrial processes when the physical systems or qualitative criteria are too complex to model and they have provided an efficient and effective way in the control of complex uncertain nonlinear or illdefined systems. In recent years, fuzzy logic systems have received much attention from control theorists as a powerful tool for nonlinear control. In this chapter, we first introduce fuzzy modeling methods for some classical chaotic systems via the Takagi–Sugeno (T–S) fuzzy model. Next, we model some hyperchaotic systems using the T–S fuzzy model and then, based on these fuzzy models, we develop an H synchronization method for two different hyperchaotic systems. Finally, the problem of synchronizing a class of time-delayed chaotic systems based on the T–S fuzzy model is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen G, Dong X (1998) From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore

    MATH  Google Scholar 

  2. Chen ZQ, Yang Y, Qi GY, Yuan ZZ (2007) A novel hyperchaos only with one equilibrium. Phys Lett A 360:696–701

    Article  MathSciNet  Google Scholar 

  3. EI-Dessoky MM (2007) Synchronization and anti-synchronization of a hyperchaotic Chen system. Chaos Solitons Fractals 39:1790–1797

    Article  Google Scholar 

  4. Elabbasy EM, Agiza HN, EI-Dessoky MM (2006) Adaptive synchronization of a hyperchaotic system with uncertain parameter. Chaos Solitons Fractals 30:1133–1142

    Article  MATH  MathSciNet  Google Scholar 

  5. Gao TG, Chen ZQ, Yuan ZZ, Yu DC (2007) Adaptive synchronization of a new hyperchaotic system with uncertain parameters. Chaos Solitons Fractals 33:922–928

    Article  Google Scholar 

  6. Jia Q (2007) Hyperchaos generated from the Lorenz chaotic system and its control. Phys Lett A 366:217–222

    Article  Google Scholar 

  7. Jia Q (2007) Adaptive control and synchronization of a new hyperchaotic system with unknown parameters. Phys Lett A 362:424–429

    Article  Google Scholar 

  8. Kim JH, Shin H, Kim E, Park M (2005) Synchronization of time-delayed TS fuzzy chaotic systems via scalar output variable. Int J Bifurc Chaos 15:2593–2601

    Article  MATH  MathSciNet  Google Scholar 

  9. Lian KY, Chiang TS, Chiu CS, Liu P (2001) Synthesis of fuzzy model-based designs to synchronization and secure communications for chaotic systems. IEEE Trans Syst Man Cybern B 31:66–83

    Article  Google Scholar 

  10. Nikolov S, Clodong S (2006) Hyperchaos–chaos–hyperchaos transition in modified R˝ossler systems. Chaos Solitons Fractals 28:252–263

    Article  MATH  Google Scholar 

  11. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  Google Scholar 

  12. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    MATH  Google Scholar 

  13. Tanaka K, Ikeda T, Wang HO (1998) A unified approach to controlling chaos via an LMI-based fuzzy control system design. IEEE Trans Circuits Syst I 45:1021–1040

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang FQ, Liu CX (2006) Hyperchaos evolved from the Liu chaotic system. Chinese Phys 15:963–968

    Article  Google Scholar 

  15. Wang GY, Zhang X, Zheng Y, Li YX (2006) A new modified hyperchaotic Lü system. Physica A 371:260–272

    Article  MathSciNet  Google Scholar 

  16. Wu XY, Guan ZH, Wu ZP (2008) Adaptive synchronization between two hyperchaotic systems. Nonlinear Anal 68:1346–1351

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang DS, Zhang HG, Li AP, Meng ZY (2007) Generalized synchronization of two non–identical chaotic systems based on fuzzy model. Acta Phys Sinica 56:3121–3126

    MATH  MathSciNet  Google Scholar 

  18. Yassen MT (2007) On hyperchaos synchronization of a hyperchaotic Lü system. Nonlinear Anal 68:3592–3600

    MathSciNet  Google Scholar 

  19. Zhang HG, Cai LL, Bien Z (2000) A fuzzy basis function vector-based multivariable adaptive fuzzy controller for nonlinear systems. IEEE Trans Syst Man Cybern B 30:210–217

    Article  Google Scholar 

  20. Zhang HB, Liao XF, Yu JB (2005) Fuzzy modeling and synchronization of hyperchaotic systems. Chaos Solitons Fractals 26:835–843

    Article  MATH  Google Scholar 

  21. Zhang HG, Guan HX, Wang ZS (2007) Adaptive synchronization of neural networks with different attractors. Prog Nat Sci 17:687–695

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang HG, Huang W, Wang ZL, Chai TY (2006) Adaptive synchronization between different chaotic systems with unknown parameters. Phys Lett A 350:363–366

    Article  Google Scholar 

  23. Zhang HG, Xie YH, Liu D (2006) Synchronization of a class of delayed chaotic neural networks with fully unknown parameters. Dyn Contin Discrete Impuls Syst B 13:297–308

    MATH  MathSciNet  Google Scholar 

  24. Zhang HG, Yang DD, Chai TY (2007) Guaranteed cost networked control for T–S fuzzy systems with time delay. IEEE Trans Syst Man Cybern C 37:160–172

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Synchronizing Chaotic Systems Based on Fuzzy Models. In: Controlling Chaos. Communications and Control Engineering. Springer, London. https://doi.org/10.1007/978-1-84882-523-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-523-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-522-2

  • Online ISBN: 978-1-84882-523-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics