Advertisement

Intracardiac Electrograms

  • Alexandru B. Chicos
  • Alan H. Kadish
Chapter

Abstract

In this chapter, we are summarizing the basic principles underlying intracardiac electrogram recording and interpretation, some of their technical and clinical applications in cardiac electrophysiology, and the signal processing steps required in various applications.

Keywords

Bipolar Recording Bipolar Electrogram Intracardiac Electrogram Body Surface Potential Unipolar Electrogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Samojloff A. Weitere Beiträge zur Elektrophysiologie des Herzens. Pflugers Arch. 1910; 135: 417–468.CrossRefGoogle Scholar
  2. 2.
    Faraday M. On electrical decomposition. Phys Trans R Soc. 1834.Google Scholar
  3. 3.
    Wilson FN, Johnston FD, Macleod AG, et al. Electrocardiograms that represent the potential variations of a single electrode. Am Heart J. 1934;9:447–458.CrossRefGoogle Scholar
  4. 4.
    Kadish AH, Morady F, Rosenheck S, et al. The effect of electrode configuration on the unipolar His-bundle electrogram. Pacing Clin Electrophysiol. 1989;12(9):1445–1450.PubMedCrossRefGoogle Scholar
  5. 5.
    Josephson ME. Electrophysiologic investigation: technical aspects. In: Josephson ME, ed. Clinical Cardiac Electrophysiology. 4th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2008.Google Scholar
  6. 6.
    Stevenson WG, Soejima K. Recording techniques for clinical electrophysiology. J Cardiovasc Electrophysiol. 2005;16(9):1017–1022.PubMedCrossRefGoogle Scholar
  7. 7.
    Scher AM, Spach MS. Cardiac depolarization and repolarization and the electrogram. In: Berne RM, ed. Handbook of Physiology. Bethesda, MD: American Physiological Society; 1979:372.Google Scholar
  8. 8.
    Wilson FN, MacLeod AG, Barker PS. The Distribution of the Currents of Action and of Injury Displayed by Heart Muscle and Other Excitable Tissues. Ann Arbor, MI: University of Michigan Press; 1933.Google Scholar
  9. 9.
    Wilson FN, Bayley RH. The electric field of an eccentric dipole in a homogeneous spherical conducting medium. Circulation. 1950;1(1):84–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Scher AM, Young AC. Ventricular depolarization and the genesis of QRS. Ann N Y Acad Sci. 1957;65(6):768–778.PubMedCrossRefGoogle Scholar
  11. 11.
    Spach MS, Barr RC, Serwer GA, et al. Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circ Res. 1972;30(5):505–519.PubMedCrossRefGoogle Scholar
  12. 12.
    Durrer D, Van Der Twell LH. Spread of activation in the left ventricular wall of the dog. I. Am Heart J. 1953;46(5):683–691.PubMedCrossRefGoogle Scholar
  13. 13.
    Schaefer H, Trautwein W. Further experiments on the nature of the excitation wave in the myocardium of the dog. Pflugers Arch. 1951;253(2):152–164.PubMedCrossRefGoogle Scholar
  14. 14.
    Biermann M, Shenasa M, Borggrefe M, et al. Interpretation of cardiac electrograms. In: Shenasa M, Borggrefe M, Breithardt G, eds. Cardiac Mapping. 2nd ed. Elmsford, NY: Blackwell/Futura; 2003:15–39.Google Scholar
  15. 15.
    Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res. 1986;58(3):356–371.PubMedCrossRefGoogle Scholar
  16. 16.
    Spach MS, Kootsey JM. Relating the sodium current and conductance to the shape of transmembrane and extracellular potentials by simulation: effects of propagation boundaries. IEEE Trans Biomed Eng. 1985;32(10):743–755.PubMedCrossRefGoogle Scholar
  17. 17.
    Steinhaus BM. Estimating cardiac transmembrane activation and recovery times from unipolar and bipolar extracellular electrograms: a simulation study. Circ Res. 1989;64(3):449–462.PubMedCrossRefGoogle Scholar
  18. 18.
    Blanchard SM, Buhrman WC, Tedder M, et al. Concurrent activation detection from unipolar and bipolar electrodes. Pacing Clin Electrophysiol. 1988;11:525.Google Scholar
  19. 19.
    Paul T, Moak JP, Morris C, et al. Epicardial mapping: how to measure local activation? Pacing Clin Electrophysiol. 1990;13(3):285–292.PubMedCrossRefGoogle Scholar
  20. 20.
    Pieper CF, Blue R, Pacifico A. Influence of time of sampling onset on parameters used for activation time determination in computerized intraoperative mapping. Pacing Clin Electro­physiol. 1991;14(12):2187–2192.PubMedCrossRefGoogle Scholar
  21. 21.
    Pieper CF, Blue R, Pacifico A. Activation time detection algorithms used in computerized intraoperative cardial mapping. A comparison with manually determined activation times. J Cardiovasc Electrophysiol. 1991;2(5):388–397.CrossRefGoogle Scholar
  22. 22.
    Kaplan DT, Smith JS, Rosenbaum D, et al. On the precision of automated activation time estimation. Comput Cardiol. 1987;14:101–104.Google Scholar
  23. 23.
    Scherlag BJ, Samet P, Helfant RH. His bundle electrogram. A critical appraisal of its uses and limitations. Circulation. 1972;46:601–613.CrossRefGoogle Scholar
  24. 24.
    Cassidy DM, Vassallo JA, Marchlinski FE, et al. Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms. Circulation. 1984;70(1):37–42.PubMedCrossRefGoogle Scholar
  25. 25.
    Josephson ME, Horowitz LN, Spielman SR, et al. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol. 1982;49(1):207–220.PubMedCrossRefGoogle Scholar
  26. 26.
    Vassallo JA, Cassidy DM, Marchlinski FE, et al. Abnormalities of endocardial activation ­pattern in patients with previous healed myocardial infarction and ventricular tachycardia. Am J Cardiol. 1986;58(6):479–484.PubMedCrossRefGoogle Scholar
  27. 27.
    Simpson EV, Ideker RE, Smith WM. An automatic activation detector for bipolar cardiac electrograms. IEEE Eng Med Biol 10th Ann Int Conf. 1988;1:113–114.Google Scholar
  28. 28.
    Pieper CF, Blue R, Pacifico A. Simultaneously collected monopolar and discrete bipolar ­electrograms: comparison of activation time detection algorithms. Pacing Clin Electrophysiol. 1993;16(3 pt 1):426–433.PubMedCrossRefGoogle Scholar
  29. 29.
    Nademanee K, McKenzie J, Kosar E, et al. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol. 2004;43(11):2044–2053.PubMedCrossRefGoogle Scholar
  30. 30.
    Nademanee K, Schwab MC, Kosar EM, et al. Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation. J Am Coll Cardiol. 2008;51(8):843–849.PubMedCrossRefGoogle Scholar
  31. 31.
    Calo L, De Ruvo E, Sciarra L, et al. Diagnostic accuracy of a new software for complex fractionated electrograms identification in patients with persistent and permanent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(10):1024–1030.PubMedCrossRefGoogle Scholar
  32. 32.
    Kremen V, Lhotska L, Macas M, et al. A new approach to automated assessment of fractionation of endocardial electrograms during atrial fibrillation. Physiol Meas. 2008;29(12):1371–1381.PubMedCrossRefGoogle Scholar
  33. 33.
    Porter M, Spear W, Akar JG, et al. Prospective study of atrial fibrillation termination during ablation guided by automated detection of fractionated electrograms. J Cardiovasc Electrophysiol. 2008;19(6):613–620.PubMedCrossRefGoogle Scholar
  34. 34.
    Scherr D, Dalal D, Cheema A, et al. Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm. 2007;4(8):1013–1020.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshida K, Ulfarsson M, Tada H, et al. Complex electrograms within the coronary sinus: time- and frequency-domain characteristics, effects of antral pulmonary vein isolation, and relationship to clinical outcome in patients with paroxysmal and persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2008;19(10):1017–1023.PubMedCrossRefGoogle Scholar
  36. 36.
    Murgatroyd FD, Krahn AD, Klein GR, et al. Stimulation and electrophysiological monitoring. In: Handbook of Cardiac Electrophysiology. London: ReMEDICA; 2002:10–14.Google Scholar
  37. 37.
    Ideker RE, Smith WM, Blanchard SM, et al. The assumptions of isochronal cardiac mapping. Pacing Clin Electrophysiol. 1989;12(3):456–478.PubMedCrossRefGoogle Scholar
  38. 38.
    Durrer D, Van L, Bueller J. Epicardial and intramural excitation in chronic myocardial infarction. Am Heart J. 1964;68:765–776.PubMedCrossRefGoogle Scholar
  39. 39.
    Chow AWC, Schilling RJ, Davies DW, et al. Noncontact cardiac mapping. In: Cabo C, Rosenbaum DS, eds. Quantitative Cardiac Electrophysiology. New York: Marcel Dekker, Inc.; 2002:361–383.CrossRefGoogle Scholar
  40. 40.
    Taccardi B, Arisi G, Macchi E, et al. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation. 1987;75(1):272–281.PubMedCrossRefGoogle Scholar
  41. 41.
    Colli-Franzone P, Guerri L, Viganotti C, et al. Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ Res. 1982;51(3):330–346.PubMedCrossRefGoogle Scholar
  42. 42.
    Khoury DS, Rudy Y. A model study of volume conductor effects on endocardial and intracavitary potentials. Circ Res. 1992;71(3):511–525.PubMedCrossRefGoogle Scholar
  43. 43.
    Beatty GE, Kagan J, Budd JR. Endocardial Therapeutics, Inc., assignee. Endocardial mapping system. US patent 5297549, 1994.Google Scholar
  44. 44.
    Ghanem RN, Jia P, Ramanathan C, et al. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2(4):339–354.PubMedCrossRefGoogle Scholar
  45. 45.
    Ghosh S, Avari JN, Rhee EK, et al. Noninvasive electrocardiographic imaging (ECGI) of epicardial activation before and after catheter ablation of the accessory pathway in a patient with Ebstein anomaly. Heart Rhythm. 2008;5(6):857–860.PubMedCrossRefGoogle Scholar
  46. 46.
    Intini A, Goldstein RN, Jia P, et al. Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2(11):1250–1252.PubMedCrossRefGoogle Scholar
  47. 47.
    Ng J, Goldberger JJ. Understanding and interpreting dominant frequency analysis of AF ­electrograms. J Cardiovasc Electrophysiol. 2007;18(6):680–685.PubMedCrossRefGoogle Scholar
  48. 48.
    Ng J, Kadish AH, Goldberger JJ. Effect of electrogram characteristics on the relationship of dominant frequency to atrial activation rate in atrial fibrillation. Heart Rhythm. 2006;3(11):1295–1305.PubMedCrossRefGoogle Scholar
  49. 49.
    Ng J, Kadish AH, Goldberger JJ. Technical considerations for dominant frequency analysis. J Cardiovasc Electrophysiol. 2007;18(7):757–764.PubMedCrossRefGoogle Scholar
  50. 50.
    Everett TH, Kok LC, Vaughn RH, et al. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans Biomed Eng. 2001; 48(9): 969–978.PubMedCrossRefGoogle Scholar
  51. 51.
    Pachon MJ, Pachon ME, Lobo TJ, et al. A new treatment for atrial fibrillation based on spectral analysis to guide the catheter RF-ablation. Europace. 2004;6(6):590–601.PubMedCrossRefGoogle Scholar
  52. 52.
    Ropella KM, Sahakian AV, Baerman JM, et al. Effects of procainamide on intra-atrial [corrected] electrograms during atrial fibrillation: implications [corrected] for detection algorithms. Circulation. 1988;77(5):1047–1054.PubMedCrossRefGoogle Scholar
  53. 53.
    Lazar S, Dixit S, Callans DJ, et al. Effect of pulmonary vein isolation on the left-to-right atrial dominant frequency gradient in human atrial fibrillation. Heart Rhythm. 2006;3(8):889–895.PubMedCrossRefGoogle Scholar
  54. 54.
    Platia EV, Brinker JA. Time course of transvenous pacemaker stimulation impedance, capture threshold, and electrogram amplitude. Pacing Clin Electrophysiol. 1986;9(5):620–625.PubMedCrossRefGoogle Scholar
  55. 55.
    DeCaprio V, Hurzeler P, Furman S. A comparison of unipolar and bipolar electrograms for cardiac pacemaker sensing. Circulation. 1977;56(5):750–755.PubMedCrossRefGoogle Scholar
  56. 56.
    Goldschlager N, Epstein A, Friedman P, et al. Environmental and drug effects on patients with pacemakers and implantable cardioverter/defibrillators: a practical guide to patient treatment. Arch Intern Med. 2001;161(5):649–655.PubMedCrossRefGoogle Scholar
  57. 57.
    Rajawat YS, Patel VV, Gerstenfeld EP, et al. Advantages and pitfalls of combining device-based and pharmacologic therapies for the treatment of ventricular arrhythmias: observations from a tertiary referral center. Pacing Clin Electrophysiol. 2004;27(12):1670–1681.PubMedCrossRefGoogle Scholar
  58. 58.
    Schuchert A, Kuck KH, Bleifeld W. Stability of pacing threshold, impedance, and R wave amplitude at rest and during exercise. Pacing Clin Electrophysiol. 1990;13(12 pt 1):1602–1608.PubMedCrossRefGoogle Scholar
  59. 59.
    Shandling AH, Florio J, Castellanet MJ, et al. Physical determinants of the endocardial P wave. Pacing Clin Electrophysiol. 1990;13(12 pt 1):1585–1589.PubMedCrossRefGoogle Scholar
  60. 60.
    Rosenheck S, Schmaltz S, Kadish AH, et al. Effect of rate augmentation and isoproterenol on the amplitude of atrial and ventricular electrograms. Am J Cardiol. 1990;66(1):101–102.PubMedCrossRefGoogle Scholar
  61. 61.
    Varriale P, Chryssos BE. Atrial sensing performance of the single-lead VDD pacemaker ­during exercise. J Am Coll Cardiol. 1993;22(7):1854–1857.PubMedCrossRefGoogle Scholar
  62. 62.
    Chan CC, Lau CP, Leung SK, et al. Comparative evaluation of bipolar atrial electrogram amplitude during everyday activities: atrial active fixation versus two types of single pass VDD/R leads. Pacing Clin Electrophysiol. 1994;17(11 pt 2):1873–1877.PubMedCrossRefGoogle Scholar
  63. 63.
    Furman S, Hurzeler P, De Caprio V. Cardiac pacing and pacemaker. III. Sensing the cardiac electrogram. Am Heart J. 1977;93(6):794–801.PubMedCrossRefGoogle Scholar
  64. 64.
    Pinski SL. Electromagnetic interference and implantable devices. In: Ellenbogen KA, Kay GN, Lau CP, et al., eds. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy. 3rd ed. Philadelphia, PA: Saunders; 2007:1149–1176.CrossRefGoogle Scholar
  65. 65.
    Ellenbogen KA, Kay GN, Lau CP, et al., eds. Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy. 3rd ed. Philadelphia, PA: Saunders; 2007.Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineFeinberg School of Medicine, Northwestern UniversityChicagoUSA

Personalised recommendations