Advertisement

Nuclear Cardiology: SPECT and PET

  • Nils P. Johnson
  • Scott M. Leonard
  • K. Lance Gould
Chapter

Abstract

Nuclear cardiology utilizes radioactive tracers to image primarily physiology as opposed to anatomy. Its two key imaging techniques, single photon emission computed tomography (SPECT) and positron emission tomography (PET), offer tradeoffs in terms of ­availability, cost, artifacts, quantification, and complexity. This chapter discusses the physiologic signals of interest in nuclear cardiology, from their acquisition to processing to reproducibility and noise.

Keywords

Positron Emission Tomography Single Photon Emission Compute Tomography Attenuation Correction Nuclear Cardiology Single Photon Emission Compute Tomography Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bassingthwaighte JB, Beard DA, Li Z. The mechanical and metabolic basis of myocardial blood flow heterogeneity. Basic Res Cardiol. 2001;96(6):582–594.PubMedCrossRefGoogle Scholar
  2. 2.
    Hariharan R, Bray M, Ganim R, Doenst T, Goodwin GW, Taegtmeyer H. Fundamental limitations of [18F]2-deoxy-2-fluoro-D-glucose for assessing myocardial glucose uptake. Circulation. 1995;91(9):2435–2444.PubMedCrossRefGoogle Scholar
  3. 3.
    Sokoloff L, Reivich M, Kennedy C, et al. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.PubMedCrossRefGoogle Scholar
  4. 4.
    Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F, Bergmann SR, Brunken RC, Case J, Delbeke D, DiCarli MF, Garcia EV, Goldstein RA, Gropler RJ, Travin M, Patterson R, Schelbert HR; Quality Assurance Committee of the American Society of Nuclear Cardiology. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol. 2006;13(6):e121–e151.Google Scholar
  5. 5.
    Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging. 2002;29(9):1257–1266.PubMedCrossRefGoogle Scholar
  6. 6.
    Knuuti MJ, Nuutila P, Ruotsalainen U, et al. The value of quantitative analysis of glucose utilization in detection of myocardial viability by PET. J Nucl Med. 1993;34(12):2068–2075.PubMedGoogle Scholar
  7. 7.
    Simon Cherry R, James Sorenson A, Michael Phelps E, eds. Physics in Nuclear Medicine. 3rd ed. Amsterdam: Elsevier; 2003.Google Scholar
  8. 8.
    Bateman TM, Berman DS, Heller GV, et al. American Society of Nuclear Cardiology position statement on electrocardiographic gating of myocardial perfusion SPECT scintigrams. J Nucl Cardiol. 1999;6(4):470–471.PubMedCrossRefGoogle Scholar
  9. 9.
    Büther F, Dawood M, Stegger L, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med. 2009;50(5):674–681.PubMedCrossRefGoogle Scholar
  10. 10.
    Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol. 1999;6(1 Pt 1):20–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG. Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging. 2006;33(5):584–588.PubMedCrossRefGoogle Scholar
  12. 12.
    Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med. 2007;48(4):630–636.PubMedCrossRefGoogle Scholar
  13. 13.
    Dawood M, Büther F, Stegger L, et al. Optimal number of respiratory gates in positron emission tomography: a cardiac patient study. Med Phys. 2009;36(5):1775–1784.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson NP, Gould KL. Clinical evaluation of a new concept: resting myocardial perfusion heterogeneity quantified by markovian analysis of PET identifies coronary microvascular dysfunction and early atherosclerosis in 1, 034 subjects. J Nucl Med. 2005;46(9):1427–1437.PubMedGoogle Scholar
  15. 15.
    Burkhoff D, Jones JW, Becker LC. Variability of myocardial perfusion defects assessed by thallium-201 scintigraphy in patients with coronary artery disease not amenable to angioplasty or bypass surgery. J Am Coll Cardiol. 2001;38(4):1033–1039.PubMedCrossRefGoogle Scholar
  16. 16.
    Prigent FM, Berman DS, Elashoff J, et al. Reproducibility of stress redistribution thallium-201 SPECT quantitative indexes of hypoperfused myocardium secondary to coronary artery disease. Am J Cardiol. 1992;70(15):1255–1263.PubMedCrossRefGoogle Scholar
  17. 17.
    Mahmarian JJ, Moyé LA, Verani MS, Bloom MF, Pratt CM. High reproducibility of myocardial perfusion defects in patients undergoing serial exercise thallium-201 tomography. Am J Cardiol. 1995;75(16):1116–1119.PubMedCrossRefGoogle Scholar
  18. 18.
    Alazraki NP, Krawczynska EG, DePuey EG, et al. Reproducibility of thallium-201 exercise SPECT studies. J Nucl Med. 1994;35(8):1237–1244.PubMedGoogle Scholar
  19. 19.
    Iskandrian AE, Garcia EV, Faber T. Analysis of serial images: a challenge and an opportunity. J Nucl Cardiol. 2008;15(1):23–26.PubMedCrossRefGoogle Scholar
  20. 20.
    Garcia EV, DePuey EG, Sonnemaker RE, et al. Quantification of the reversibility of stress-induced thallium-201 myocardial perfusion defects: a multicenter trial using bull’s-eye polar maps and standard normal limits. J Nucl Med. 1990;31(11):1761–1765.PubMedGoogle Scholar
  21. 21.
    Van Train KF, Garcia EV, Maddahi J, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med. 1994;35(4):609–618.PubMedGoogle Scholar
  22. 22.
    Van Train KF, Areeda J, Garcia EV, et al. Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med. 1993;34(9):1494–1502.PubMedGoogle Scholar
  23. 23.
    Beller GA. Quantitative nuclear cardiology and future directions for SPECT imaging. J Nucl Cardiol. 2007;14(4):417–418.PubMedCrossRefGoogle Scholar
  24. 24.
    Garcia EV, Faber TL, Cooke CD, Folks RD, Chen J, Santana C. The increasing role of quantification in clinical nuclear cardiology: the Emory approach. J Nucl Cardiol. 2007;14(4):420–432.PubMedCrossRefGoogle Scholar
  25. 25.
    Germano G, Kavanagh PB, Slomka PJ, Van Kriekinge SD, Pollard G, Berman DS. Quantitation in gated perfusion SPECT imaging: the Cedars-Sinai approach. J Nucl Cardiol. 2007;14(4):433–454.PubMedCrossRefGoogle Scholar
  26. 26.
    Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol. 2007;14(4):455–465.PubMedCrossRefGoogle Scholar
  27. 27.
    Watson DD, Smith WH 2nd. The role of quantitation in clinical nuclear cardiology: the University of Virginia approach. J Nucl Cardiol. 2007;14(4):466–482.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007;14(4): 483–491.PubMedCrossRefGoogle Scholar
  29. 29.
    Slomka PJ, Berman DS, Germano G. Quantification of serial changes in myocardial perfusion. J Nucl Med. 2004;45(12):1978–1980.PubMedGoogle Scholar
  30. 30.
    Itti E, Klein G, Rosso J, et al. Assessment of myocardial reperfusion after myocardial infarction using automatic 3-dimensional quantification and template matching. J Nucl Med. 2004;45(12):1981–1988.PubMedGoogle Scholar
  31. 31.
    Faber TL, Modersitzki J, Folks RD, Garcia EV. Detecting changes in serial myocardial perfusion SPECT: a simulation study. J Nucl Cardiol. 2005;12(3):302–310.PubMedCrossRefGoogle Scholar
  32. 32.
    Sdringola S, Loghin C, Boccalandro F, Gould KL. Mechanisms of progression and regression of coronary artery disease by PET related to treatment intensity and clinical events at long-term follow-up. J Nucl Med. 2006;47(1):59–67.PubMedGoogle Scholar
  33. 33.
    Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40(11):1848–1856.PubMedGoogle Scholar
  34. 34.
    Jagathesan R, Kaufmann PA, Rosen SD, et al. Assessment of the long-term reproducibility of baseline and dobutamine-induced myocardial blood flow in patients with stable coronary artery disease. J Nucl Med. 2005;46(2):212–219.PubMedGoogle Scholar
  35. 35.
    deKemp RA, Yoshinaga K, Beanlands RS. Will 3-dimensional PET-CT enable the routine quantification of myocardial blood flow? J Nucl Cardiol. 2007;14(3):380–397.Google Scholar
  36. 36.
    Takeda K, Saito K, Makino K, et al. Iodine-123-BMIPP myocardial washout and cardiac work during exercise in normal and ischemic hearts. J Nucl Med. 1997;38(4):559–563.PubMedGoogle Scholar
  37. 37.
    De Geeter F, Caveliers V, Pansar I, Bossuyt A, Franken PR. Effect of oral glucose loading on the biodistribution of BMIPP in normal volunteers. J Nucl Med. 1998;39(11):1850–1856.PubMedGoogle Scholar
  38. 38.
    Caveliers V, De Geeter F, Pansar I, Dendale P, Bossuyt A, Franken PR. Effect of exercise induced hyperlactatemia on the biodistribution and metabolism of iodine-123–15(p-iodophenyl)-3-R, S-methyl pentadecanoic acid in normal volunteers. Eur J Nucl Med. 2000; 27(1):33–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakajima K, Shimizu K, Taki J, et al. Utility of iodine-123-BMIPP in the diagnosis and follow-up of vasospastic angina. J Nucl Med. 1995;36(11):1934–1940.PubMedGoogle Scholar
  40. 40.
    Hashimoto A, Nakata T, Tsuchihashi K, Tanaka S, Fujimori K, Iimura O. Postischemic functional recovery and BMIPP uptake after primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. Am J Cardiol. 1996;77(1):25–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim Y, Sawada Y, Fujiwara G, Chiba H, Nishimura T. Therapeutic effect of co-enzyme Q10 on idiopathic dilated cardiomyopathy: assessment by iodine-123 labelled 15-(p-iodophenyl)-3(R, S)-methylpentadecanoic acid myocardial single-photon emission tomography. Eur J Nucl Med. 1997;24(6):629–634.PubMedGoogle Scholar
  42. 42.
    Taki J, Nakajima K, Matsunari I, et al. Assessment of improvement of myocardial fatty acid uptake and function after revascularization using iodine-123-BMIPP. J Nucl Med. 1997; 38(10):1503–1510.PubMedGoogle Scholar
  43. 43.
    Sakurabayashi T, Takaesu Y, Haginoshita S, et al. Improvement of myocardial fatty acid metabolism through L-carnitine administration to chronic hemodialysis patients. Am J Nephrol. 1999;19(4):480–484.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuwabara Y, Watanabe S, Nakaya J, et al. Postrevascularization recovery of fatty acid utilization in ischemic myocardium: a randomized clinical trial of potassium channel opener. J Nucl Cardiol. 2000;7(4):320–327.PubMedCrossRefGoogle Scholar
  45. 45.
    Iwado Y, Mizushige K, Manabe K, et al. Suppression of fatty acid metabolism after exercise stress in patients with no electrocardiographic ST segment shift during balloon angioplasty. Angiology. 2001;52(12):841–849.PubMedCrossRefGoogle Scholar
  46. 46.
    Inglese E, Leva L, Matheoud R, et al. Spatial and temporal heterogeneity of regional myocardial uptake in patients without heart disease under fasting conditions on repeated whole-body 18F-FDG PET/CT. J Nucl Med. 2007;48(10):1662–1669.PubMedCrossRefGoogle Scholar
  47. 47.
    Teräs M, Tolvanen T, Johansson JJ, Williams JJ, Knuuti J. Performance of the new generation of whole-body PET/CT scanners: discovery STE and discovery VCT. Eur J Nucl Med Mol Imaging. 2007;34(10):1683–1692.PubMedCrossRefGoogle Scholar
  48. 48.
    Gould KL, Pan T, Loghin C, Johnson NP, Guha A, Sdringola S. Frequent diagnostic errors in cardiac PET/CT due to misregistration of CT attenuation and emission PET images: a definitive analysis of causes, consequences, and corrections. J Nucl Med. 2007;48(7):1112–1121.PubMedCrossRefGoogle Scholar
  49. 49.
    Wollenweber SD, Gould KL. Investigation of cold contrast recovery as a function of ­acquisition and reconstruction parameters for 2D cardiac PET. IEEE Nucl Sci Symp Conf Rec. 5: 2552–2556;23-29 Oct 2005.Google Scholar
  50. 50.
    DICOM. http://medical.nema.org/; 2010 Accessed 06.10.2010.
  51. 51.
    Fred Mettler A Jr, Milton Guiberteau J, eds. Essentials of Nuclear Medicine Imaging. 5th ed. Amsterdam: Elsevier; 2006.Google Scholar
  52. 52.
    Ami Iskandrian E, Ernest Garcia V, eds. Nuclear Cardiac Imaging: Principles and Applications. 4th ed. New York: Oxford University; 2008.Google Scholar
  53. 53.
    van der Wall EE, eds. Noninvasive Imaging of Cardiac Metabolism. Dordrecht, The Netherlands: Martinus Nijhoff; 1987.Google Scholar
  54. 54.
    Paul Christian E, Kristen Waterstram-Rich M, eds. Nuclear Medicine and PET/CT: Technology and Techniques. 6th ed. Amsterdam: Elsevier; 2007.Google Scholar

Copyright information

© Springer London 2010

Authors and Affiliations

  • Nils P. Johnson
    • 1
  • Scott M. Leonard
  • K. Lance Gould
  1. 1.Department of Medicine, Division of CardiologyFeinberg School of Medicine, Northwestern UniversityChicagoUSA

Personalised recommendations