Skip to main content

Biomaterials in Craniofacial Surgery

  • Chapter
Plastic and Reconstructive Surgery

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

Summary

Bone substitutes are increasingly used in craniofacial surgery. This chapter discusses the characteristics of an ideal bone substitute and briefly reviews the evolving history of the biomaterials with a particular emphasis on craniofacial reconstruction. Some of the most important bone substitutes, including calcium phosphate and hydroxyapatite (HA) ceramics and cements, bioactive glass and polymer products, are discussed. Areas of active research and future directions include tissue-engineered products and an increasing emphasis on bioactivity of the implant material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson JM. The future of biomedical materials. J Mater Sci. 2006 Nov;17(11):1025–1028.

    CAS  Google Scholar 

  2. Baker SB, Weinzweig J, Kirschner RE, Bartlett SP. Applications of a new carbonated calcium phosphate bone cement: early experience in pediatric and adult craniofacial reconstruction. Plast Reconstr Surg. 2002 May;109(6):1789–1796.

    Article  PubMed  Google Scholar 

  3. Barralet J, Best S, Bonfield W. Carbonate substitution in precipitated hydroxyapatite: an investigation into the effects of reaction temperature and bicarbonate ion concentration. J Biomed Mater Res. 1998 July;41(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  4. Boyer L, Carpena J, Lacout JL. Synthesis of phosphate-silicate apatites at atmospheric pressure. Solid State Ionics. 1997;95:121–129.

    Article  CAS  Google Scholar 

  5. Burstein FD, Williams JK, Hudgins R, et al. Hydroxyapatite cement in craniofacial reconstruction: experience in 150 patients. Plast Reconstr Surg. 2006 Aug;118(2):484–489.

    Article  PubMed  CAS  Google Scholar 

  6. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970 Jan 16;167(916):279–280.

    Article  Google Scholar 

  7. Carlisle EM. Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int. 1981;33(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  8. Cenzi R, Farina A, Zuccarino L, Carinci F. Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J Craniofac Surg. 2005 July;16(4):526–530.

    Article  PubMed  Google Scholar 

  9. Chen B, Lin H, Zhao Y, et al. Activation of demineralized bone matrix by genetically engineered human bone mor-phogenetic protein-2 with a collagen binding domain derived from von Willebrand factor propolypeptide. J Biomed Mater Res A. 2007 Feb;80(2):428–434.

    PubMed  Google Scholar 

  10. Cho YR, Gosain AK. Biomaterials in craniofacial reconstruction. Clin Plast Surg. 2004 July;31(3):377–385, v.

    Article  PubMed  Google Scholar 

  11. Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007 Aug 16;121(1–2):91–99.

    Article  Google Scholar 

  12. Clokie CM, Sandor GK. Reconstruction of 10 major mandibular defects using bioimplants containing BMP-7. J (Can Dent Assoc). 2008 Feb;74(1):67–72.

    Google Scholar 

  13. Cordioli G, Mazzocco C, Schepers E, Brugnolo E, Majzoub Z. Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement. Clinical and histological findings. Clin Oral Implants Res. 2001 June;12(3):270–278.

    Article  PubMed  CAS  Google Scholar 

  14. Costantino PD, Friedman CD, Jones K, Chow LC, Pelzer HJ, Sisson GA, Sr. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg. 1991 Apr;117(4):379–384.

    Article  PubMed  CAS  Google Scholar 

  15. Ducic Y. Titanium mesh and hydroxyapatite cement cranioplasty: a report of 20 cases. J Oral Maxillofac Surg. 2002 Mar;60(3):272–276.

    Article  PubMed  Google Scholar 

  16. Duskova M, Smahel Z, Vohradnik M, et al. Bioactive glass-ceramics in facial skeleton contouring. Aesth Plast Surg. 2002 Jul–Aug;26(4):274–283.

    Article  Google Scholar 

  17. Elsalanty ME, Por YC, Genecov DG, et al. Recombinant human BMP-2 enhances the effects of materials used for reconstruction of large cranial defects. J Oral Maxillofac Surg. 2008 Feb;66(2):277–285.

    Article  PubMed  Google Scholar 

  18. Eppley BL, Kilgo M, Coleman JJ, 3rd. Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: indications, surgical technique, and long-term follow-up. Plast Reconstr Surg. 2002 Mar;109(3):864–871.

    Article  PubMed  Google Scholar 

  19. Eppley BL, Sadove AM, German RZ. Evaluation of HTR polymer as a craniomaxillofacial graft material. Plast Reconstr Surg. 1990 Dec;86(6):1085–1092.

    Article  PubMed  CAS  Google Scholar 

  20. Eppley BL. Biomechanical testing of alloplastic PMMA cran-ioplasty materials. J Craniofac Surg. 2005 Jan;16(1):140–143.

    Article  PubMed  Google Scholar 

  21. Eppley BL. Craniofacial reconstruction with computergenerated HTR patient-matched implants: use in primary bony tumor excision. J Craniofac Surg. 2002 Sep;13(5):650–657.

    Article  PubMed  Google Scholar 

  22. FDA. Bone Source HAC marketing approval. In: Services HaH, ed. 2002.

    Google Scholar 

  23. FDA. Mimix Bone Void Filler marketing approval. In: Services HaH, ed. 2002.

    Google Scholar 

  24. FDA. NovaBone Putty marketing approcal. In: Services HaH, ed. 2006.

    Google Scholar 

  25. FDA. NovaBoneAR marketing approval. In: Services HaH, ed. 2004.

    Google Scholar 

  26. FDA. Pre-market approval for Norian SRS Cement (PMA P970010). In: Services HaH, ed. 1998.

    Google Scholar 

  27. Friedman CD, Costantino PD, Jones K, Chow LC, Pelzer HJ, Sisson GA, Sr. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg. 1991 Apr;117(4):385–389.

    Article  PubMed  CAS  Google Scholar 

  28. Fu YC, Nie H, Ho ML, Wang CK, Wang CH. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng. 2008 Mar 1;99(4):996–1006.

    Article  Google Scholar 

  29. Genecov DG, Kremer M, Agarwal R, et al. Norian cranio-facial repair system: compatibility with resorbable and nonresorbable plating materials. Plast Reconstr Surg. 2007 Nov;120(6):1487–1495.

    Article  PubMed  CAS  Google Scholar 

  30. Gibson IR, Best SM, Bonfield W. Chemical characterization of silicon-substituted hydroxyapatite. J Biomed Mater Res. 1999 Mar 15;44(4):422–428.

    Article  Google Scholar 

  31. Gibson IR, Bonfield W. Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 2002 Mar 15;59(4):697–708.

    Article  Google Scholar 

  32. Goebel JA, Jacob A. Use of Mimix hydroxyapatite bone cement for difficult ossicular reconstruction. Otolaryngol Head Neck Surg. 2005 May;132(5):727–734.

    Article  PubMed  Google Scholar 

  33. Gomez E, Martin M, Arias J, Carceller F. Clinical applications of Norian SRS (calcium phosphate cement) in craniofacial reconstruction in children: our experience at Hospital La Paz since 2001. J Oral Maxillofac Surg. 2005 Jan;63(1):8–14.

    Article  PubMed  Google Scholar 

  34. Gosain AK. Bioactive glass for bone replacement in cran-iomaxillofacial reconstruction. Plast Reconstr Surg. 2004 Aug;114(2):590–593.

    Article  PubMed  Google Scholar 

  35. Haeseker B. Mr. Job van Meekeren (1611–1666) and surgery of the hand. Plast Reconstr Surg. 1988 Sep;82(3):539–546.

    Article  PubMed  CAS  Google Scholar 

  36. Hing KA, Revell PA, Smith N, Buckland T. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials. 2006 Oct;27(29):5014–5026.

    Article  PubMed  CAS  Google Scholar 

  37. Hoshino M, Namikawa T, Kato M, Terai H, Taguchi S, Takaoka K. Repair of bone defects in revision hip arthro-plasty by implantation of a new bone-inducing material comprised of recombinant human BMP-2, Beta-TCP powder, and a biodegradable polymer: an experimental study in dogs. J Orthop Res. 2007 Aug;25(8):1042–1051.

    Article  PubMed  CAS  Google Scholar 

  38. Jensen TB, Overgaard S, Lind M, Rahbek O, Bunger C, Soballe K. Osteogenic protein-1 increases the fixation of implants grafted with morcellised bone allograft and ProOsteon bone substitute: an experimental study in dogs. J Bone Joint Surg Br. 2007 Jan;89(1):121–126.

    Article  PubMed  CAS  Google Scholar 

  39. Kent JN, Zide MF, Kay JF, Jarcho M. Hydroxylapatite blocks and particles as bone graft substitutes in orthog-nathic and reconstructive surgery. J Oral Maxillofac Surg. 1986 Aug;44(8):597–605.

    Article  PubMed  CAS  Google Scholar 

  40. Kent JN. Reconstruction of the alveolar ridge with hydroxyapatite. Dent Clin N Am. 1986 Apr;30(2):231–257.

    PubMed  CAS  Google Scholar 

  41. Kim CS, Kim JI, Kim J, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials. 2005 May;26(15):2501–2507.

    Article  PubMed  CAS  Google Scholar 

  42. Kitsugi T, Yamamuro T, Kokubo T. Bonding behavior of a glass-ceramic containing apatite and wollastonite in segmental replacement of the rabbit tibia under load-bearing conditions. J Bone Joint Surg. 1989 Feb;71(2):264–272.

    PubMed  CAS  Google Scholar 

  43. LeGeros RZ, Trautz OR, Klein E, LeGeros JP. Two types of carbonate substitution in the apatite structure. Experientia. 1969 Jan 15;25(1):5–7.

    Article  Google Scholar 

  44. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002 Feb; 395:81–98.

    Article  PubMed  Google Scholar 

  45. Leshkivich KS, Monroe EA. Solubility characteristics of synthetic silicate sulphate apatites. J Mater Sci. 1993;28:9–14.

    Article  CAS  Google Scholar 

  46. Liu HW, Chen CH, Tsai CL, Lin IH, Hsiue GH. Heterobifunctional poly(ethylene glycol)-tethered bone morphogenetic protein-2-stimulated bone marrow mes-enchymal stromal cell differentiation and osteogenesis. Tissue Eng. 2007 May;13(5):1113–1124.

    Article  PubMed  CAS  Google Scholar 

  47. Losee JE, Karmacharya J, Gannon FH, et al. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with biore-sorbable mesh. J Craniofac Surg. 2003 Jan;14(1):117–124.

    Article  PubMed  Google Scholar 

  48. Manson PN, Crawley WA, Hoopes JE. Frontal cranioplasty: risk factors and choice of cranial vault reconstructive material. Plast Reconstr Surg. 1986 June;77(6):888–904.

    Article  PubMed  CAS  Google Scholar 

  49. Menderes A, Baytekin C, Topcu A, Yilmaz M, Barutcu A. Craniofacial reconstruction with high-density porous polyethylene implants. J Craniofac Surg. 2004 Sep;15(5):719–724.

    Article  PubMed  Google Scholar 

  50. Miller L, Guerra AB, Bidros RS, Trahan C, Baratta R, Metzinger SE. A comparison of resistance to fracture among four commercially available forms of hydroxy-apatite cement. Ann Plast Surg. 2005 July;55(1):87–92; discussion 3.

    Article  PubMed  CAS  Google Scholar 

  51. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V. Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg. 2003 Mar;14(2):144–153.

    Article  PubMed  Google Scholar 

  52. Murata M, Akazawa T, Tazaki J, et al. Blood permeability of a novel ceramic scaffold for bone morphogenetic pro-tein-2. J Biomed Mater Res B Appl Biomater. 2007 May;81(2):469–475.

    PubMed  CAS  Google Scholar 

  53. Okafuji N, Shimizu T, Watanabe T, et al. Tissue reaction to poly (lactic-co-glycolic acid) copolymer membrane in rhBMP used rabbit experimental mandibular reconstruction. Eur J Med Res. 2006 Sep 29;11(9):394–396.

    Google Scholar 

  54. Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. J Mater Sci. 2005 Oct;16(10):899–907.

    CAS  Google Scholar 

  55. Ruys AJ. Silicon-doped hydroxyapatite. J Austr Ceramic Soc. 1993;29:71–80.

    CAS  Google Scholar 

  56. Sanan A, Haines SJ. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997 Mar;40(3):588–603.

    PubMed  CAS  Google Scholar 

  57. Simpson D. Titanium in Cranioplasty. J Neurosurg. 1965 Mar;22:292–293.

    Article  PubMed  CAS  Google Scholar 

  58. Tadjoedin ES, de Lange GL, Lyaruu DM, Kuiper L, Burger EH. High concentrations of bioactive glass material (BioGran) vs. autogenous bone for sinus floor elevation. Clin Oral Implants Res. 2002 Aug;13(4):428–436.

    Article  PubMed  Google Scholar 

  59. Tanizawa Y, Suzuki T. X-ray photoelectron spectroscopy study of silicate containing apatite. Phosphorous Res Bull. 1994;4:83–88.

    CAS  Google Scholar 

  60. Turhani D, Weissenbock M, Stein E, Wanschitz F, Ewers R. Exogenous recombinant human BMP-2 has little initial effects on human osteoblastic cells cultured on collagen type I coated/noncoated hydroxyapatite ceramic granules. J Oral Maxillofac Surg. 2007 Mar;65(3):485–493.

    Article  PubMed  Google Scholar 

  61. Valimaki V V, Yrjans JJ, Vuorio EI, Aro HT. Molecular biological evaluation of bioactive glass microspheres and adjunct bone morphogenetic protein 2 gene transfer in the enhancement of new bone formation. Tissue Eng. 2005 Mar–Apr;11(3–4):387–394.

    Article  PubMed  Google Scholar 

  62. Verret DJ, Ducic Y, Oxford L, Smith J. Hydroxyapatite cement in craniofacial reconstruction. Otolaryngol Head Neck Surg. 2005 Dec;133(6):897–899.

    Article  PubMed  CAS  Google Scholar 

  63. Virolainen P, Heikkila J, Yli-Urpo A, Vuorio E, Aro HT. Histomorphometric and molecular biologic comparison of bioactive glass granules and autogenous bone grafts in augmentation of bone defect healing. J Biomed Mater Res. 1997 Apr;35(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  64. Yaremchuk MJ. Facial skeletal reconstruction using porous polyethylene implants. Plast Reconstr Surg. 2003 May;111(6):1818–1827.

    Article  PubMed  Google Scholar 

  65. Zins JE, Moreira-Gonzalez A, Papay FA. Use of calcium-based bone cements in the repair of large, full-thickness cranial defects: a caution. Plast Reconstr Surg. 2007 Oct;120(5):1332–1342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this chapter

Cite this chapter

Gage, E., Langevin, CJ., Papay, F. (2010). Biomaterials in Craniofacial Surgery. In: Siemionow, M.Z., Eisenmann-Klein, M. (eds) Plastic and Reconstructive Surgery. Springer Specialist Surgery Series. Springer, London. https://doi.org/10.1007/978-1-84882-513-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-513-0_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-512-3

  • Online ISBN: 978-1-84882-513-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics