Skip to main content

Fuel Cells

  • Chapter
Biohydrogen

Part of the book series: Green Energy and Technology ((GREEN))

  • 1781 Accesses

Abstract

During the past decade, fuel cells have received an enormous amount of attention all over the world as novel electrical energy conversion systems. The higher efficiencies and lower emissions make the fuel cells a valuable contribution to the power generation facilities. As a clean energy source, hydrogen gas (H2) has potential if used in an electricity generating fuel cell (Caglar, 2003). H2 production by reforming of HC-based fuels in suitable fuel processors has become more and more important, in particular for both mobile and residential fuel cells applications (Specchia et al., 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aravindhababu, P., Mohan, G., Sasikala, J. 1999. Emerging energy conversion techniques for next millennium, in Proceedings National Solar Energy Convention 1999, Indore, 20–22 Dec 1999. Pushpkunj, Indore.

    Google Scholar 

  • Ayhan, A.F. 2002. Design of a piezoelectrically actuated microvalve for flow control in fuel cells. M.S. Thesis, University of Pittsburgh, School of Engineering, Pittsburgh, PA.

    Google Scholar 

  • Berger, C. 1968. Handbook of fuel cell technology. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Bockris, O.M.J., Srinivasan, E. 1969. Fuel cells: their electrochemistry. McGraw-Hill, New York.

    Google Scholar 

  • Caglar, A. 2003. Gaseous products from solid wastes. Energy Edu Sci Technol 10:107–110.

    Google Scholar 

  • Cao, D., Bergens, S.H. 2004. Pt–Ruadatom nanoparticles as anode catalysts for direct methanol fuel cells. J Power Sources 134:170–180.

    Article  CAS  Google Scholar 

  • Chaurasia, P.B.L. 2000. Solar energy utilization technology through chemical reactions: a report. Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Chaurasia, P.B.L., Ando, Y., Tanaka, T. 2003. Regenerative fuel cell with chemical reactions. Energy Convers Manage 44:611–628.

    Article  CAS  Google Scholar 

  • Collins, J.A. 2001. Development of electrocatalyst materials for direct methanol fuel cells. Energy Marie Curie Fellowship Conference, Profactor GmbH, Steyr, Austria, 16–19 May 2001.

    Google Scholar 

  • Demirbas, A. 2002. Similarities and differences in electricity and light concepts: convenient dimensions theory. Energy Edu Sci Technol 9:69–74.

    CAS  Google Scholar 

  • Demirbas, A. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44:2093–109.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2007a. Fuel cells as clean energy converters. Energy Sources Part A 29:185–191.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2007b. Progress and recent trends in biofuels. Prog Energy Combus Sci 33:1–18.

    Article  CAS  Google Scholar 

  • Dicks, A.L., Diniz da Costa, J.C., Simpson, A., McLellan, B. 2004. Fuel cells, hydrogen and energy supply in Australia. J Power Sources 131:1–12.

    Article  CAS  Google Scholar 

  • Gao, L., Huang, H., Korzeniewski, C. 2004. The efficiency of methanol conversion to CO2 on thin films of Pt and PtRu fuel cell catalysts. Electrochim Acta 49:1281–1287.

    Article  CAS  Google Scholar 

  • Grove, W.R. 1839. On voltaic series and the combination of gases by platinum. Phil Magazine J Sci XIV:127–130.

    Google Scholar 

  • Grove, W.R. 1842. On a gaseous voltaic battery. Philosophical Magazine J Sci XXI:417–420.

    Google Scholar 

  • He, Z., Chen, J., Liu, D., Zhou, H., Kuang, Y. 2004. Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Related Mater 13:1764–1770.

    Article  CAS  Google Scholar 

  • Hohlein, B., von Andrian, S., Grube, Th., Menzer, R. 2000. Critical assessment of power trains with fuel-cell systems and different fuels. J Power Sources 86:243–249.

    Article  CAS  Google Scholar 

  • Hu, G., Fan, J., Chen, S., Liu, Y., Cen, K. 2004. Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. J Power Sources 136:1–9.

    Article  CAS  Google Scholar 

  • Ito, E., Yamashita, M., Saito, Y. 1991. A composite Ru–Pt catalyst for 2-propanol dehydrogenation adaptable to the chemical heat pump system. Chem Soc Jpn Chem Lett 1:351–354.

    Article  Google Scholar 

  • Jusys, Z., Behm, R.J. 2004. Simultaneous oxygen reduction and methanol oxidation on a carbon-supported Pt catalyst and mixed potential formation-revisited. Electrochimica Acta 49:3891–3900.

    Article  CAS  Google Scholar 

  • Karakoussis, V., Brandon, N.P., Leach, M., van der Vorst, R. 2001. The environmental impact of manufacturing planar and tubular solid oxide fuel cells. J. Power Sources 101:10–26.

    Article  CAS  Google Scholar 

  • Kazim, M. 2000. Economical and environment assessments of proton exchange membrane fuel cell in public undertakings. Energy Convers Manage 42:763–72.

    Article  Google Scholar 

  • Kordesh, K. 1998. Fuel cell and their applications. VCH, Weinheim.

    Google Scholar 

  • Laforgia, D., Ardito, V. 1994. Biodiesel fueled IDI engines: performances, emissions and heat release investigation. Biores Technol 51:53–59.

    Article  Google Scholar 

  • Larmine, J., Dicks, A. 1999. Fuel cell system explained. Wiley, New York.

    Google Scholar 

  • Lin, Y.-M., Rei, M.-H. 2000. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. Int J Hydrogen Energy 25:211–219.

    Article  CAS  Google Scholar 

  • Luengnaruemitchai, A., Osuwan, S., Gulari, E. 2004. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst. Int J Hydrogen Energy 29:429–435.

    Article  CAS  Google Scholar 

  • Ma, F., Hanna, M.A. 1999. Biodiesel production: a review. Biores Technol 70:1–15.

    Article  CAS  Google Scholar 

  • McAuliffe, C.A. 1980. Hydrogen and energy. Macmillan, London, pp. 73–77.

    Google Scholar 

  • Ning, M., Ando, Y., Tanaka, T., Takashima, T. 1999. Study of photocatalytic 2-propanol dehydrogenation for solar thermal cell. American Institute of Aeronautics and Astronautics, AIAA-2000-2863 (35th IECEC-2000; 7.24–7.28).

    Google Scholar 

  • Parker, S.F., Taylor, J.W., Albers, P., Lopez, M., Sextl, G., Lennon, D., McInroy, A.R., Sutherland, I.W. 2004. Inelastic neutron scattering studies of hydrogen on fuel cell catalysts. Vibration Spectrosc 35:179–182.

    Article  CAS  Google Scholar 

  • Pehnt, M. 2001. Life-cycle assessment of fuel cell stacks. Int J Hydrogen Energy 26:91–101.

    Article  CAS  Google Scholar 

  • Rosso, I., Galletti, C., Saracco, G., Garrone, E., Specchia, V. 2004. Development of A zeolites-supported noble-metal catalysts for CO preferential oxidation: H2 gas purification for fuel cell. Appl Catal B 48:195–203.

    Article  CAS  Google Scholar 

  • Ruettinger, W., Ilinich, O., Farrauto, R.J. 2003. A new generation of water gas shift catalysts for fuel cell applications. J Power Sources 118:61–65.

    Article  CAS  Google Scholar 

  • Seiler, T., Savinova, E.R., Friedrich, K.A., Stimming, U. 2004. Poisoning of PtRu/C catalysts in the anode of a direct methanol fuel cell: a DEMS study. Electrochimica Acta 49:3927–3936.

    Article  CAS  Google Scholar 

  • Sgroi, M., Bollito, G., Saracco, G., Specchia, S. 2005. BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit: Study of the feed system. J Power Sources 149:8–14.

    Article  CAS  Google Scholar 

  • Shukla, A.K., Christensen, P.A., Dickinson, A.J., Hamnett, A. 1998. A liquid-feed solid polymer electrolyte direct methanol fuel cell operating at near-ambient conditions. J Power Sources 76:54–59.

    Article  CAS  Google Scholar 

  • Shukla, A.K., Jackson, C.L., Scott, K., Murgia, G. 2002. A solid-polymer electrolyte direct methanol fuel cell with a mixed reactant and air anode. J Power Sources 111:43–51.

    Article  CAS  Google Scholar 

  • Specchia, S., Tillemans, F.W.A., van den Oosterkamp, P.F., Saracco, G. 2005. BIOFEAT: Conceptual design and selection of a biodiesel fuel processor for a vehicle fuel cell auxiliary power unit. J Power Sources 145:683–690.

    Article  CAS  Google Scholar 

  • Van Gerpen, J. 2005. Biodiesel processing and production. Fuel Process Technol 86:1097–1107.

    Article  CAS  Google Scholar 

  • Veziroglu, T.N. 1975. Hydrogen energy: Part B. Plenum, New York.

    Google Scholar 

  • Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.

    Google Scholar 

  • Yamashita, M., Kawamura, T., Suzuki, M., Saito, Y. 1991. Characteristics of suspended Ru/carbon catalyst for 2-propanol dehydrogenation applicable to chemical heat pump. Bull Chem Soc Jpn 64:272–278.

    Article  CAS  Google Scholar 

  • Yao, S.C., Tang, X., Hsieh, C.C., Alyousef, Y., Vladimer, M., Fedder, G.K., Amon, C.H., 2006. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 31:636–649.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Fuel Cells. In: Biohydrogen. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-511-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-511-6_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-510-9

  • Online ISBN: 978-1-84882-511-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics