Biohydrogen pp 105-161 | Cite as


Part of the Green Energy and Technology book series (GREEN)


Hydrogen energy is a clean or inexhaustible energy like renewable energy and nuclear energy. Today’s energy supply has a considerable impact on the environment. Hydrogen energy is a promising alternative solution because it is clean and environmentally safe. It also produces negligible levels of greenhouse gases and other pollutants when compared with the fossil energy sources they replace. It is well-known that hydrogen is a clean and renewable fuel. Hydrogen is a secondary source of energy — an energy carrier — which is used to move, store and deliver energy in an easily usable form.


Sewage Sludge Hydrogen Production Hydrogen Storage Visible Light Irradiation Metal Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., Suzuki, E., Nagoshi, K., Miyashita, K., Kaneko, M. 1999. Electron source in photoinduced hydrogen production on Pt-supported TiO2 particles. J Phys Chem B 103:1119–1123.Google Scholar
  2. Adesina, A.A., Meeyoo, V., Foulds, G. 1995. Thermolysis of hydrogen sulphide in an open tubular reactor. Int J Hydrogen Energy 20:777–783.Google Scholar
  3. Al-Shamma, L., Naman, S.A. 1989. Kinetic study for thermal production of hydrogen from H2S by heterogeneous catalysis of vanadium sulfide in a flow system. Int J Hydrogen Energy 14:173–179.Google Scholar
  4. Amiridis, M.D., Duevel, R.V., Wachs, I.E. 1999. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia. Appl Catal B Environ 20:111–122.Google Scholar
  5. Anderson, C., Bard, A.J. 1995. Improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J Phys Chem 99:9882–9885.Google Scholar
  6. Arakawa, H., Sayama, K. 2000. Solar hydrogen production: significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts. Catal Surv Jpn 4:75–80.Google Scholar
  7. Arni, S. 2004. Hydrogen-rich gas production from biomass via thermochemical pathways. Energy Edu Sci Technol 13:47–54.Google Scholar
  8. Arpe, H. (Ed.) 1989 Ullmann’s Encyclopedia of industrial chemistry. Hydrogen sulfide. 5th edn. Vol. A13, VCH, Weinheim, pp. 467–485.Google Scholar
  9. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Tao, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271.Google Scholar
  10. Ashokkumar, M., Kudo, A., Saito, N., Sakata, T. 1994. Semiconductor sensitization by RuS2 colloids on TiO2 electrodes. Chem Phys Lett 229:383–388.Google Scholar
  11. Ashokkumar, M., Maruthamuthu, P. 1989. Factors influencing the photocatalytic efficiency of WO3 particles. J Photochem Photobiol A 49:249–258.Google Scholar
  12. Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C. 2002. Photoelectrochemical hydrogen generation from water using solar energy: materials-related aspects. Int J Hydrogen Energy 27:991–1022.Google Scholar
  13. Balat, M., Ozdemir, N. 2005. New and renewable hydrogen production processes. Energy Sources 27:1285–1298.Google Scholar
  14. Bamwenda, G.R., Arakawa, H. 2000. Cerium dioxide as a photocatalyst for water decomposition to O-2 in the presence of Ce-aq(4+) and Fe-aq(3+) species. J Mol Catal A 161:105–113.Google Scholar
  15. Baykara, S.Z., Ayfer Kale, A., Veziroglu, T.N. 2005. Possibilities for hydrogen production from H2S in Black Sea. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey, 13–15 July 2005.Google Scholar
  16. Baykara, S.Z., Figen, E.H., Kale, A., Veziroglu, T.N. 2007. Hydrogen from hydrogen sulphide in Black Sea. Int J Hydrogen Energy 32:1246–1250.Google Scholar
  17. Berry, G.D., Pasternak, A.D., Rambach, G.D., Smith, J.R., Schock, R.N. 1996. Hydrogen as a future transportation fuel. Energy 21:289–303.Google Scholar
  18. Bessekhouad, Y., Trari, M. 2002. Photocatalytic hydrogen production from suspension of spinel powders AMn2O4 (A = Cu and Zn). Int J Hydrogen Energy 27:357–362.Google Scholar
  19. Bhaumik, A., Inagaki, S. 2001. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity J Am Chem Soc 123:691–696.Google Scholar
  20. Bishara, A., Salman, O.A., Khraishi, N., Marafi, A. 1987. Thermochemical decomposition of hydrogen sulfide by solar energy. Int J Hydrogen Energy 12:679–685.Google Scholar
  21. Bogdanovic, B., Brand, R.A., Marjanovic, A., Schwikardi, M., Tolle, J. 2000. Metal doped sodium aluminum hydrides as potential new hydrogen storage materials. J Alloys Comp 302:36–58.Google Scholar
  22. Bogdanovic, B., Schwickardi, M. 1997. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Comp 253–254:1–9.Google Scholar
  23. Borgarello, E., Kiwi, J., Graetzel, M., Pelizzetti, E., Visca, M. 1982. Visible-light induced water cleavage in colloidal solutions of chromium-doped titanium-dioxide particles. J Am Chem Soc 104:2996–3002.Google Scholar
  24. Brown, W.G., Kaplan, L., Wilzbach, K.E. 1952. The exchange of hydrogen gas with lithium and sodium borohydrides. J Am Chem Soc 74:1348.Google Scholar
  25. Buhler, N., Meier, K., Reber, J.F. 1984. Photochemical hydrogen-production with cadmium sulfide suspensions. J Phys Chem 88:3261–3268.Google Scholar
  26. Buntkowsky, G., Walaszek, B., Adamczyk, A., Xu, Y., Limbach, H.-H., Chaudret, B. 2006. Mechanism of nuclear spin initiated para-H2 to ortho-H2 Conversion. Phys Chem Chem Phys 16:1929–1935.Google Scholar
  27. Caglar, A., Ozmen, H. 2000. Hydrogen: as an attractive fuel in future. Energy Edu Sci Technol 6:1–18Google Scholar
  28. Cao, D., Bergens, S.H. 2004. Pt–Ruadatom nanoparticles as anode catalysts for direct methanol fuel cells. J Power Sources 134:170–180.Google Scholar
  29. Cerveramarch, S.C., Borrell, L., Gimenez, J., Simarro, R., Andujar, J.M. 1992. Solar hydrogen photoproduction from sulfide sulfite substrate. Int J Hydrogen Energy 17:683–688.Google Scholar
  30. Chaurasia, P.B.L., Ando, Y., Tanaka, T. 2003. Regenerative fuel cell with chemical reactions. Energy Convers Manage 44:611–628.Google Scholar
  31. Chen, P., Wu, X., Lin, J., Tan, K.L. 1999. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93.Google Scholar
  32. Choi, W., Termin, A., Hoffmann, M. 1994. The role of metal ion dopants in quantum-sized TiO2. J Phys Chem 98:13669–13679.Google Scholar
  33. Choudhary, T.V., Goodman, D.W. 1999. Stepwise methane steam reforming: a route to CO-free hydrogen. Catal Lett 59:93–94.Google Scholar
  34. Choudhary, T.V., Goodman, D.W. 2000. CO-free production of hydrogen via stepwise steam reforming of methane. J Catal 192:316–321.Google Scholar
  35. Clark, P.D., Dowling, N.I., Hyne, J.B., Moon, D.L. 1995. Production of hydrogen and sulfur from hydrogen sulfide in refineries and gas processing plants. Alberta Sulphur Res Quart Bull 32:11–28.Google Scholar
  36. Cotton, F.A., Wilkinson, G. 1967. Advanced Inorganic Chemistry. Interscience, New York. Google Scholar
  37. Dagan, G., Tomkiewicz, M. 1994. Preparation and characterization of TiO2 aerogels for use as photocatalysts. J NonCryst Sol 175:294–302.Google Scholar
  38. Das, L.M. 1996. Hydrogen–oxygen reaction mechanism and its implication to hydrogen engine combustion. Int J Hydrogen Energy 21:703–715.Google Scholar
  39. David, E. 2005. An overview of advanced materials for hydrogen storage. J Materials Proc Technol 162–163:169–177.Google Scholar
  40. De, G.C., Roy, A.M., Bhattacharya, S.S. 1996. Effect of n-Si on the photocatalytic production of hydrogen by Pt-loaded CdS and CdS/ZnS catalyst. Int J Hydrogen Energy 21:19–23.Google Scholar
  41. Demirbas, A. 1998. Determination of combustion heat of fuels by using non-calorimetric experimental data. Energy Edu Sci Technol 1:7–12.Google Scholar
  42. Demirbas, A. 2002. Fuel properties of hydrogen, liquefied petroleum gas (LPG), and compressed natural gas (CNG) for transportation. Energy Sources 24:601–610.Google Scholar
  43. Demirbas, A. 2007. Storage and transportation opportunities of hydrogen. Energy Sources Part B 2:287–295.Google Scholar
  44. Demirbas, A. 2008. Nano-catalytic liquefaction of hydrogen. Energy Sources Part A 30:1540–1547.Google Scholar
  45. Desilvestro, J., Neumannspallart, M. 1985. Photoredox reactions on semiconductors at open circuit reduction of Fe3+ on WO3 electrodes and particle suspensions. J Phys Chem 89:3684–3689.Google Scholar
  46. Dillon, A.C., Heben, M.J. 2001. Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A 72:133–142.Google Scholar
  47. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J. 1997. Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–378.Google Scholar
  48. Dinga, G.P. 1988. Hydrogen: The ultimate fuel and energy carrier. J Chem Educ 65:688–691.Google Scholar
  49. Domen, K., Kudo, A., Onishi, T. 1986. Mechanism of photocatalytic decomposition of water into H-2 and O-2 over NiO – SrTiO3. J Catal 102:92–98.Google Scholar
  50. Domen, K., Naito, S., Onishi, T., Tamaru, K. 1982. Photocatalytic decomposition of liquid water on a NiO–SrTiO3 catalyst. Chem Phys Lett 92:433–434.Google Scholar
  51. Durant, P.J., Durant, B. 1970. Introduction to advanced inorganic chemistry. Longman, London. Google Scholar
  52. Fakioglu, E., Yurum, Y., Veziroglu, T.N. 2004. A review of hydrogen storage systems based on boron and its compounds. Int J Hydrogen Energy 29:1371–1376.Google Scholar
  53. Fan, Y.-Y., Liao, B., Liu, M., Wei, Y.-L. Liu, M.-Q., Cheng, H.-M. 1999. Hydrogen uptake in vapor grown carbon nanofibers. Carbon 37:1649–1652.Google Scholar
  54. Faherburch, A.L., Bube, R.H. 1983. Fundamentals of Solar Cells. Academic, New York.Google Scholar
  55. Farkas, A. 1935. Orthohydrogen, parahydrogen and heavy hydrogen. Cambridge University Press, Cambridge.Google Scholar
  56. Fletcher, E.A., Noring, J.E., Murray, J.P. 1984. Hydrogen-sulfide as a source of hydrogen. Int Hydrogen Energy 9:587–593.Google Scholar
  57. Fonash, S.J. 1981. Solar cells device physics. Academic, New York.Google Scholar
  58. Fujishima, A., Honda, K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38.Google Scholar
  59. Fujishima, A., Rao, T.N., Tryk, D.A. 2000. Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21.Google Scholar
  60. Galinska, A., Walendziewski, J. 2005. Photocatalytic water splitting over Pt TiO2 in the presence of sacrificial reagents. Energy Fuels 19:1143–1147.Google Scholar
  61. Goerrig, D. 1958. DBP German Patent 1,077,644.Google Scholar
  62. Green, M.A. 1982. Solar cells. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  63. Gringue, D., Horowitz, G., Garnier, E. 1987. Stabilization of CdS and CdSe photoelectrodes modified by a catalyst-containing polythiophene coating. Ber Buns Phys Chem 91:402–405.Google Scholar
  64. Gross, K.J., Thomass, G.J., Jensen, C.M. 2002. Catalyzed alanates for hydrogen storage. J Alloys Comp 330–332:683–690.Google Scholar
  65. Gupta, B.K., Srivastava, O.N. 2000. Synthesis and hydrogenation behaviour of graphitic nanofibres. Int J Hydrogen Energy 25:825–830.Google Scholar
  66. Gurunathan, K. 2000. Photobiocatalytic production of hydrogen using sensitized TiO–MV2+ system coupled Rhodopseudomonas capsulate. J Mol Catalysis A Chem 156:59–67.Google Scholar
  67. Gurunathan, K., Maruthamuthu, P. 1995. Photogeneration of hydrogen using visible-light with undoped doped alpha-Fe2O3 in the presence of methyl viologen. Int J Hydrogen Energy 20:287–295.Google Scholar
  68. Gurunathan, K., Maruthamuth, P., Sastri, M.V.C. 1997. Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution. Int J Hydrogen Energy 22:57–62.Google Scholar
  69. Hacisalihoglu, B., Demirbas, A.H., Hacisalihoglu, S. 2008. Hydrogen from gas hydrate and hydrogen sulfide in the Black Sea. Energy Edu Sci Technol 21:109–115.Google Scholar
  70. He, P., Gu, G., Shao, L., Zhang, Y. 2000. Research on low temperature thermo-chemical conversion to oil process from sewage sludge. Water Sci Tech 42:301–308.Google Scholar
  71. He, Z., Chen, J., Liu, D., Zhou, H., Kuang, Y. 2004. Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Related Mater 13:1764–1770.Google Scholar
  72. Herrmann, J.M., Disdier, J., Pichat, P. 1986. Photoassisted platinum deposition on TiO2 powder using various platinum complexes. J Phys Chem 90:6028–6034.Google Scholar
  73. Hitoki, G., Takata, T., Kondo, J., Hara, M., Kobayashi, H., Domen, K. 2002. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda λ ≤ 500 nm). Chem Commun 16:1698–1699.Google Scholar
  74. Hohhmann, P. 2002. Tomorrow’s energy: hydroen, fuel cells, and the prospects for a cleaner planet. MIT Press, Cambridge, MA, London, UK, 2002.Google Scholar
  75. Höhlein, B., von Andrian, S., Grube, Th., Menzer, R. 2000. Critical assessment of power trains with fuel-cell systems and different fuels. J Power Sources 86:243–249.Google Scholar
  76. Huang, C., Raissi, T.-A. 2005. Analysis of sulfur–iodine thermochemical cycle for solar hydrogen production. Part I: decomposition of sulfuric acid. Solar Energy 78:632–646.Google Scholar
  77. Huhey, E.J. 1978. Inorganic chemistry. Harper and Row, New York. Google Scholar
  78. Hwang, D.W., Kim, H.G., Jang, J.S., Bae, S.W., Ji, S.M., Lee, J.S. 2004. Photocatalytic decomposition of water–methanol solution over metal-doped layered perovskites under visible light irradiation. Catal Today 93–5:845–850.Google Scholar
  79. Hwang, D.W., Kim, J., Park, T.J., Lee, J.S. 2002. Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catal Lett 80:53–57.Google Scholar
  80. Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–57.Google Scholar
  81. Inoue, Y., Kubokawa, T., Sato, K. 1991. Photocatalytic activity of alkali-metal titanates combined with Ru in the decomposition of water. J Phys Chem 95:4059–4063.Google Scholar
  82. Ishihara, T., Nishiguchi, H., Fukamachi, K., Takita, Y. 1999. Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. J Phys Chem B 103:1–3.Google Scholar
  83. Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., Domen, K. 2002. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (lambda λ ≤ 650 nm). J Am Chem Soc 124:13547–13553.Google Scholar
  84. Jang, J.S., Kim, H.G., Reddy, V.R., Bae, S.W., Ji, S.M., Lee, J.S. 2005. Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal 231:213–222.Google Scholar
  85. Jensen, C.M., Zidan, R., Mariels, N., Hee, A., Hagen, C. 1999. Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material? Int J Hydrogen Energy 24:461–465.Google Scholar
  86. Kamat, P.V. 1989. Photoelectrochemistry in particulate systems 9. Photosensitized reduction in a colloidal TiO2 system using anthracene-9-carboxylic acid as the sensitizer. J Phys Chem 93: 859–864.Google Scholar
  87. Kamat, P.V., Fox, M.A. 1983. Photo-sensitization of TiO2 colloids by Erythrosin-B in acetonitrile. Chem Phys Lett 102:379–384.Google Scholar
  88. Kapoor, M.P., Inagaki, S., Yoshida, H. 2005. Novel zirconium-titanium phosphates mesoporous materials for hydrogen production by photoinduced water splitting. J Phys Chem B 109:9231–9238.Google Scholar
  89. Kato, H., Kudo, A. 1998. New tantalite photocatalysts for water decomposition into H2 and O2. Chem Phys Lett 295:487–492.Google Scholar
  90. Kato, H., Kudo, A. 1999a. Photocatalytic decomposition of pure water into H2 and O2 overSrTa2O6 prepared by a flux method. Chem Lett 11:1207–1208.Google Scholar
  91. Kato, H., Kudo, A. 1999b. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal Lett 58:153–155.Google Scholar
  92. Kawai, T., Sakata, T. 1980. Photocatalytic hydrogen production from liquid methanol and water. J Chem Soc Chem Commun 15:694–695.Google Scholar
  93. Kennedy, I.H., Dunnwald, D. 1983. Photooxidation of organic-compounds at doped alpha Fe2O3 electrodes. J Electrochem Soc 130:2013–2016.Google Scholar
  94. Kennedy, L.A., Fridman, A.A., Saveliev, A.V. 1995. Superadiabatic combustion in porous media: wave propagation, instabilities, new type of chemical reactor. Fluid Mechanics Res 22:1–25.Google Scholar
  95. Khan, S.U.M., Al-Shahry, M., Ingler, W.B. 2002. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245.Google Scholar
  96. Kida, T., Guan, G., Yoshida, A. 2003. LaMnO3/CdS nanocomposite: a new photocatalyst for hydrogen production from water under visible light irradiation. Chem Phys Lett 371:563–567.Google Scholar
  97. Kida, T., Guan, G., Yamada, N., Ma, T., Kimura, K., Yoshida, A. 2004. Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. Int J Hydrogen Energy 29:269–274.Google Scholar
  98. Kiuchi, H., Nakamura, T., Funaki, K., Tanaka, T. 1982. Recovery of hydrogen from hydrogen sulfide with metals and metal sulfides. Int J Hydrogen Energy 7:477–482.Google Scholar
  99. Kiwi, J., Morrison, C. 1984. Heterogeneous photocatalysis-dynamics of charge-transfer in lithium-doped anatase-based catalyst powders with enhanced water photocleavage under ultraviolet-irradiation. J Phys Chem 88:6146–6152.Google Scholar
  100. Knacke, O., Kubaschewski, O., Hesselmann, K. 1991. Thermochemical Properties of Inorganic Substances, 2nd edn. Springer, Berlin Heidelberg New York.Google Scholar
  101. Koca, A., Sahin, M. 2002. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. Int J Hydrogen Energy 27:363–367.Google Scholar
  102. Koca, A., Sahin, M. 2003. Photocatalytic hydrogen production by direct sunlight: a laboratory experiment. J Chem Edu 80:1314–1315.Google Scholar
  103. Kohno, M., Kaneko, T., Ogura, S., Sato, K., Inoue, Y. 1998. Dispersion of ruthenium oxide on barium titanates (Ba6Ti17O40, Ba4Ti13O30, BaTi4O9 and Ba2Ti9O20) and photocatalytic activity for water decomposition. J Chem Soc Faraday Trans 94:89–94.Google Scholar
  104. Kormann, C., Bahnemann, D.W., Hoffmann, M.R. 1988. Preparation and characterization of quantum-size titanium-dioxide. J Phys Chem 92:5196–5201.Google Scholar
  105. Koroneos, C., Dompros, A., Roumbas, G., Moussiopoulos, N. 2005. Advantages of the use of hydrogen fuel as compared to kerosene. Res Conser Recyc 44:99–113.Google Scholar
  106. Kotera, Y., Todo, N., Fukuda, K. 1976. Process for production of hydrogen and sulfur from hydrogen sulfide as raw material. US Patent No. 3,962,409.Google Scholar
  107. Kudo, A. 2001. Development of photocatalyst materials for water splitting with the aim at photon energy conversion. J Ceram Soc Jpn 109:81–88.Google Scholar
  108. Kudo, A., Tanaka, A., Domen, K., Maruya, K., Aika, K., Onishi, T. 1988. Photocatalytic decomposition of water over NiO–K4Nb6O17 catalyst. J Catal 111:67–76.Google Scholar
  109. Kudo, A., Kato, H., Nakagawa, S. 2000. Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. J Phys Chem B 104:571–575.Google Scholar
  110. Lee, J., Kato, T., Fujishima, A., Honda, K. 1984. Photoelectrochemical oxidation of alcohols on polycrystalline zinc-oxide. Bull Chem Soc Jpn 57:1179–1183.Google Scholar
  111. Linsebigler, A., Lu, G., Yates, J.T. 1995. Co-chemisorption on TiO2-oxygen vacancy site influence on co-adsorption. J Chem Phys 103:9438–9443. Google Scholar
  112. Lippard, S.J., Ucko, D.A. 1968. Transition metal borohydride complexes. II. Th reaction of copper(I) compounds with boron hydride anions. Inorg Chem 7:1051–1058.Google Scholar
  113. Litter, M.I. 1999. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114.Google Scholar
  114. Luinstra, E. 1996. Hydrogen from H2S: a review of the leading processes. Proceedings of 7th GRI Sulfur Recovery Conference, Gas Research Institute, Chicago, pp. 149–165.Google Scholar
  115. Mackor, A., Blasse, G. 1981. Visible-light induced photocurrents in SrTiO3-LaCrO3 single crystalline electrodes. Chem Phys Lett 77:6–8.Google Scholar
  116. Malinowska, B., Walendziewski, J., Robert, D., Weber, J.V., Stolarski, M. 2003a. Titania aerogels: preparation and photocatalytic tests. Int J Photoenergy 5:147–152. Google Scholar
  117. Malinowska, B., Walendziewski, J., Robert, D., Weber, J.V., Stolarski, M. 2003b. The study of photocatalytic activities of titania and titania-silica aerogels. Appl Catal B Environ 46:441–451. Google Scholar
  118. Maruthamuthu, P., Ashokkumar, M. 1988. Hydrogen generation using Cu(II)/WO3 and oxalic acid by visible-light. Int J Hydrogen Energy 13:677–680.Google Scholar
  119. Maruthamuthu, P., Ashokkumar, M., Gurunathan, K., Subramanian, E., Sastri, M.V.C. 1989. Hydrogen evolution from water with visible radiation in presence of Cu(II)/WO3 and electron relay. Int J Hydrogen Energy 14:525–528.Google Scholar
  120. Maruthamuthu, P., Gurunathan, K., Subramanian, E., Sastri, M.V.C. 1993. Visible-light induced hydrogen-production with Cu(II)/Bi2O3 and Pt/ Bi2O3/RuO2 from aqueous methyl viologen solution. Int J Hydrogen Energy 18:9–13.Google Scholar
  121. Maruthamuthu, P., Muthu, S., Gurunathan, K.,Ashokkumar, M., Sastri, M.V.C. 1992. Photobiocatalysis: hydrogen evolution using a semiconductor coupled with photosynthetic bacteria. Int J Hydrogen Energy 17:863–866.Google Scholar
  122. Megalofonos, S.K., Papayannakos, N.G. 1997. Kinetics of catalytic reaction of methane and hydrogen sulphide over MoS2. J Appl Catal A General 165:249–258.Google Scholar
  123. Mesmer, R.E., Jolly, W.L. 1962. The exchange of deuterium with solid potassium hydroborate. J Am Chem Soc 84:2039–2042.Google Scholar
  124. Midilli, A., Olgun, H., Ayhan, T. 2000. Solar hydrogen production from hazelnut shells. Int J Hydrogen Energy 25:723–732. Google Scholar
  125. Midilli, A., Dogru, M., Akay, G., Howarth, C.R. 2002. Hydrogen production from sewage sludge via a fixed bed gasifier product gas. Int J Hydrogen Energy 27:1035–1041.Google Scholar
  126. Midilli, A., Ay, M., Dincer, I., Rosen, M.A. 2005. On hydrogen and hydrogen energy strategies I: current status and needs. Renew Sust Energy Rev 9:255–271.Google Scholar
  127. Miller, E., Rocheleau, R., Khan, S. 2004. A hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films. Int J Hydrogen Energy 29:907–914.Google Scholar
  128. Miranda, R. 2004. Hydrogen from lignocellulosic biomass via thermochemical processes. Energy Edu Sci Technol 13:21–30.Google Scholar
  129. Moon, J., Takagi, H., Fujishiro, Y., Awano, M. 2001. Preparation and characterization of the Sb doped TiO2 photocatalysts. J Mater Sci 36:949–955.Google Scholar
  130. Moon, S.C., Mametsuka, H., Tabata, S., Suziki, E. 2000. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal Today 58:125–132.Google Scholar
  131. Namon, S.A., Aliwi, S.M., Alemara, K. 1986. Hydrogen-production from the splitting of H2S by visible-light irradiation of vanadium sulfides dispersion loaded with RuO2. Int J Hydrogen Energy 11:33–38.Google Scholar
  132. Navvio, J.A., Testa, J.J., Djedjeian, P., Padron, J.R., Rodriguez, D., Litter, M.I. 1999. Iron-doped titania powders prepared by a sol-gel method. Appl Catal A General 178:191–203.Google Scholar
  133. Ni, M., Leung, K.H.M., Leung, D.Y.C., Sumathy, K. 2007. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425.Google Scholar
  134. Ni, M., Leung, K.H.M., Sumathy, K., Leung, D.Y.C. 2004. Water electrolysis: a bridge between renewable resources and hydrogen. Proceedings of the International Hydrogen Energy Forum, Beijing, PRC, pp. 475–480.Google Scholar
  135. Nikandrov, V.V., Shlyk, M.A., Zorin, N.A., Gogotov, I.N., Krosnovsky, A.A. 1988. Efficient photoinduced electron-transfer from inorganic semiconductor TiO2 to bacterial hydrogenase. Febs Lett 234:111–114.Google Scholar
  136. Nishikawa, T., Nakajima, T., Shinohara, Y. 2001. An exploratory study on effect of the isomorphic replacement of TiO2. J Mol Struct Theochem 545:67–74.Google Scholar
  137. Noganow, L.S. 1992. Hydrogen. McGraw-Hill Encyclopedia of Science & Technology, 7th edn. Vol. 8. McGraw-Hill, New York, pp. 581–588.Google Scholar
  138. Ogura, S., Kohno, M., Sato, K., Inoue, Y. 1997. Photocatalytic activity for water decomposition of RuO2-combined M2Ti6O13 (M = Na, K, Rb, Cs). Appl Surf Sci 121:521–524.Google Scholar
  139. Ohno, T., Saito, S., Fujihara, K., Matsumura, M. 1996. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodide using platinum-loaded TiO2 powder. Bull Chem Soc Jpn 69:3059–3064.Google Scholar
  140. Okamoto, K., Yamamoto, Y., Tanaka, H., Itaya, A. 1985. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 powder. Bull Chem Soc Jpn 58:2023–2028.Google Scholar
  141. Oosawa, Y. 1984. Photocatalytic decomposition of aqueous hydroxylamine solution over anatase and precious metal anatase. J Phys Chem 88:3069–3074.Google Scholar
  142. Ostroff, A., Sanderson, R. 1957. Oxidation and thermal decomposition of sodium and potassium borohydrides. J Inorg Nuclear Chem 4:230–231.Google Scholar
  143. Ozturk, T., Demirbas, A. 2007. Boron compounds as hydrogen storage materials. Energy Sources Part A 29:1415–1423.Google Scholar
  144. Parker, S.F., Taylor, J.W., Albers, P., Lopez, M., Sextl, G., Lennon, D., McInroy, A.R., Sutherland, I.W. 2004. Inelastic neutron scattering studies of hydrogen on fuel cell catalysts. Vibration Spectrosc 35:179–182.Google Scholar
  145. Petrov, K. 1995. The Black Sea and hydrogen energy. Int J Hydrogen Energy 16:805–808.Google Scholar
  146. Plass, J.H., Barbir, F., Miller, H.P., Veziroglu, T.N. 1990. Economics of hydrogen as a fuel for surface transportation. Int J Hydrogen Energy 15:663–668.Google Scholar
  147. Piotrowska, A., Walendziewski, J. 2005. Photocatalytic hydrogen production from the water over titania aerogels under UV irradiation. Proceedings International Hydrogen Energy Congress and Exhibition IHEC 2005, Istanbul, Turkey.Google Scholar
  148. Ranjit, K.T., Cohen, H., Willner, I., Bossmann, S., Braun, A. 1999. Lanthanide oxide-doped titanium dioxide: effective photocatalysts for the degradation of organic pollutants. J Mater Sci 34:5273–5280.Google Scholar
  149. Reber, J.F., Meier, K. 1984. Photochemical production of hydrogen with zinc-sulfide suspensions. J Phys Chem 88:5903–5913.Google Scholar
  150. Rifkin, J. 2002. The hydrogen economy. Jeremy P. Tarcher/Penguin, New York.Google Scholar
  151. Rocheleau, R.E., Vierthaler, M. 1994. Optimization of multijunction a-Si:H solar cells using an integrated optical/electrical model, in Proceedings of the 21st World Conference on Photovoltaic Energy Conversion, pp. 567–570. Institute for Electrical and Electronics Engineers, Honolulu, HI.Google Scholar
  152. Rostrup-Nielsen, J.R. 1984. Catalytic steam reforming, in Catalysis: science and technology, Vol. 5, J.R. Anderson, M. Boudart. Springer, Berlin Heidelberg New York, pp. 1–117.Google Scholar
  153. Sandrock, G., Thomas, G. 2001.The IEA/DOE/SNL on-line hydride databases. Appl Phys A Mater Sci Proc 72A:153–155.Google Scholar
  154. Sato, J., Saito, N., Nishiyama, H., Inoue, Y. 2001. New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10configuration. J Phys Chem B 105:6061–6063.Google Scholar
  155. Sayama, K. Arakawa, H. 1992a. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum titanium (IV) oxide suspension. J Chem Soc Chem Commun 2:150–152.Google Scholar
  156. Sayama, K., Arakawa, H. 1992b. Remarkable effect of Na2CO3 addition on photodecomposition of liquid water into H2 and O2 from suspension of semiconductor powder loaded with various metals. Chem Lett 2:253–256.Google Scholar
  157. Sayama, K., Arakawa, H. 1996. Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst. J Photochem Photobiol A Chem 94:67–68.Google Scholar
  158. Sayama, K., Arakawa, H. 1993. Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over ZrO2 catalyst. J Phys Chem 97:531–533.Google Scholar
  159. Sayama, K., Arakawa, H. 1994. Effect of Na2CO3 addition on photocatalytic decomposition of liquid water over various semiconductor catalysts. J Photochem Photobiol A Chem 77:243–247.Google Scholar
  160. Schlapbach, L., Züttel, A. 2001. Hydrogen-storage materials for mobile applications. Nature 414:353–358.Google Scholar
  161. Schlesinger, H.J., Brown, H.C., 1940. Metallo borohydrides. III. Lithium borohydride. J Am Chem Soc 62:3429–3435.Google Scholar
  162. Schriver, D.F., Atkins, P.W. 1990. Langford CH. Inorganic Chemistry. ELBS, Oxford. Google Scholar
  163. Serban, A., Nissenbaum, A. 2000. Light induced production of hydrogen from water by catalysis with ruthenium melanoidins. Int J Hydrogen Energy 25:733–737.Google Scholar
  164. Serpone, N., Borgarello, E., Gratzel, M. 1984. Visible-light induced generation of hydrogen from H2S in mixed semiconductor dispersions: improved efficiency through inter-particle electron transfer. Chem Commun 6:342–344.Google Scholar
  165. Shahbazov, J., Usupov, I. 1994. Non-trading sources of energy for hydrogen. Int J Hydrogen Energy 19:863–864. Google Scholar
  166. Silvera, I.F., Pravica, M.G. 1998. Hydrogen at megabar pressures and the importance of ortho–para concentration. J Phys Condens Matter 10:11169–11177.Google Scholar
  167. Slimane, R.B., Lau, F.S., Dihu, R., Bingue, J.P., Saveliev, A.V., Fridman, A.A., Kennedy, L.A. 2002. Production of hydrogen by superadiabatic decomposition of hydrogen sulfide, 14th World Hydrogen Energy Conference, Montreal, Quebec, Canada, 9–14 June 2002.Google Scholar
  168. Slimane, R.B., Lau, F.S., Khinkis, M., Bingue, J.P., Saveliev, A.V., Kennedy, L.A. 2004a. Conversion of hydrogen sulfide to hydrogen by superadiabatic partial oxidation: thermodynamic consideration. Int J Hydrogen Energy 29:1471–1477.Google Scholar
  169. So, W.W., Kim, K.J., Moon, S.J. 2004. Photo-production of hydrogen over the CdS–TiO2 nanocomposite particulate films treated with TiCl4. Int J Hydrogen Energy 29:229–234.Google Scholar
  170. Stasinevich, D.S., Egorenko, G.A. 1968. A thermographic investigation of sodium hydroborate-sodium hydride system. Russ J Inorg Chem 133:341–343.Google Scholar
  171. Stewart, A.T., Squires, G.L. 1955. Analysis of ortho- and para-hydrogen mixtures by the thermal conductivity method. J Sci Instrum 32:26–29.Google Scholar
  172. Stolarek, P., Ledakowicz, S. 2001. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Water Sci Tech 44:333–339.Google Scholar
  173. Surmen, Y., Demirbas, A. 2002. Thermochemical conversion of residual biomass to hydrogen for Turkey. Energy Sources 24:403–411.Google Scholar
  174. Suzuki, A., Nakamura, T., Yokoyama, S. 1990. Effect of operating parameters on thermochemical liquefaction of sewage sludge. J Chem Eng Jpn 23:6–11.Google Scholar
  175. Suzuki, A., Nakamura, T., Yokoyama, S., Ogi, T., Koguchi, K. 1988. Conversion of sewage sludge to heavy oil by direct thermochemical liquefaction. J Chem Eng Jpn 21:288–293.Google Scholar
  176. Takata, T., Shinohara, K., Tanaka, A., Hara, M., Kondo, J.N., Domen, K. 1997a. A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J Photochem Photobiol A: Chem 106:45–49.Google Scholar
  177. Takata, T., Furumi, Y., Shinohara, K., Tanaka, A., Hara, M., Kondo, J.N., Domen, K. 1997b. Photocatalytic decomposition of water on spontaneously hydrated layered perovskites. Chem Mater 9:1063–1064.Google Scholar
  178. Talavera, R.R., Vargas, S., Arroyo-Murillo, R., Montiel-Campos, R., Haro-Poniatowski, E. 1997. Modification of the phase transition temperatures in titania doped with various cations. J Mater Res 12:439–443.Google Scholar
  179. Timmerhaus, C., Flynn, T.M. 1989. Cryogenic engineering. Plenum, New York.Google Scholar
  180. Tryk, D.A., Fujishima, A., Honda, K. 2000. Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376.Google Scholar
  181. Tsuzuki, K., Eiki, H., Inoue, N., Sagara, A., Noda, N., Hirohata, Y., Hino; T. 1999. Hydrogen absorption/desorption behavior with oxygen contaminated boron film. J Nuclear Mat 266–269:247–250. Google Scholar
  182. Turker, L. 2001. Diborane–tetraborane conversion in C60 vesicles-a theoretical study. Int J Hydrogen Energy 26:837–842.Google Scholar
  183. Urban, D.L., Antal, M.J. 1982. Study of the kinetics of sewage pyrolysis using DSC and DTA. Fuel 61:799–806.Google Scholar
  184. Veziroglu, T. 1975. Hydrogen Energy, Part B. Plenum, New York.Google Scholar
  185. Viswanathan, B. 2006. An introduction to energy sources. Indian Institute of Technology, Madras, India.Google Scholar
  186. Wang, H. 2007. Hydrogen production from a chemical cycle of H2S splitting. Int J Hydrogen Energy 32:3907–3914.Google Scholar
  187. Wang, P., Orimo, S., Tanabe, K., Fujii, H. 2003. Hydrogen in mechanically milled amorphous boron. J Alloys Comp 350:218–221.Google Scholar
  188. Williamson, K., Edeskuty, F. 1986. Recent developments in hydrogen technology, Vol. I–II. CRC, Boca Raton, FL.Google Scholar
  189. Wu, J., Uchida, S., Fujishiro, Y., Yin, S., Sato, T. 1999a. Synthesis and photocatalytic properties of HTaWO6/(Pt, TiO2) and HTaWO6/(Pt, Fe2O3) nanocomposites. Int J Inorg Mater 1:253–258.Google Scholar
  190. Wu, J., Uchida, S., Fujishiro, Y., Yin, S., Sato, T. 1999b. Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. J Photochem Photobiol A Chem 128:129–133.Google Scholar
  191. Wu, J., Yin, S., Lin, Y., Lin, J.M., Huang, M.L., Sato, T. 2001. Hydrothermal synthesis of HNbWO6/MO series nanocomposites and their photocatalytic properties. J Mat Sci 36:3055–3059.Google Scholar
  192. Yokoyama, S., Suzuki, A., Murakami, M., Ogi, T., Koguchi, K., Nakamura, E. 1987. Liquid fuel production from sewage sludge by catalytic conversion using sodiumcarbonate. Fuel 66:1150–1155.Google Scholar
  193. Yoshimura, J., Ebina, Y., Kondo, J., Domen, K., Tanaka, A. 1993. Visible-light induced photocatalytic behavior of a layered perovskite type niobate. J Phys Chem B 97:1970–1973.Google Scholar
  194. Yvon, K. 1998. Complex transition-metal hydrides. Chimia 52:613–619.Google Scholar
  195. Zaluska, A., Zaluski, L., Strom-Oslen, J.O. 2000. Sodium alanates for reversible hydrogen storage. J Alloys Comp 298:125–134.Google Scholar
  196. Zaluski, L., Zaluska, A., Strom-Olsen, J.O. 1999. Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis. J Alloys Comp 290:71–78.Google Scholar
  197. Zaman, J., Chakma, A. 1995. Production of hydrogen and sulphur from hydrogen sulphide. Fuel Proc Technol 41:159–198.Google Scholar
  198. Zhou, L. 2005. Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408.Google Scholar
  199. Zou, Z.G., Ye, J.H., Sayama, K., Arakawa, H. 2001. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 424:624–627.Google Scholar
  200. Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Maurona, P., Emmenegger, C. 2003. LiBH4 a new hydrogen storage material. J Power Sources 118:1–7. Google Scholar
  201. Züttel, A., Wenger, P., Sudan, P., Maurona, P., Orimo, S. 2004. Hydrogen density in nanostructured carbon, metals and complex materials. Mater Sci Eng B 108:9–18.Google Scholar

Copyright information

© Springer London 2009

Personalised recommendations