Skip to main content

Introduction

  • Chapter
  • 1727 Accesses

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

At the start of the twenty-first century, we are facing significant energy challenges. The world’s energy requirements are currently satisfied by fossil fuels, which serve as the primary energy source. Consequently, overwhelming scientific evidence concludes that this unfettered use of fossil fuels has caused the world’s climate to change, with potentially disastrous effect. Moreover, oil crises, which surfaced in 1973, provided a reminder that breaking an energy paradigm based on fossil fuel dependency would lead to economic and environmental advantages. In response, a sustained program of research and development into many areas of hydrogen as an energy carrier started in 1977, with the initiation of the International Energy Agency (Vijayaraghavan and Soom, 2006).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba, S., Humphrey, A.E., Milis, N.F. 1973. Biochemical engineering, 2nd edn. Academic, New York.

    Google Scholar 

  • Akella, A.K., Saini, R.P., Sharma, M.P. 2009. Social, economical and environmental impacts of renewable systems. Renew Energy 34:390–396.

    Article  Google Scholar 

  • Annual Energy Review (AER) 1999. 2000. Energy Information Administration, US Department of Energy, Washington, DC.

    Google Scholar 

  • Arni, S. 2004. Hydrogen-rich gas production from biomass via thermochemical pathways. Energy Edu Sci Technol 13:47–54.

    CAS  Google Scholar 

  • Axaopoulos, P., Panagakis, P., Tsavdaris, A., Georgakakis, D. 2001. Simulation and experimental performance of a solar heated anaerobic digester. Solar Energy 70:155–164.

    Article  CAS  Google Scholar 

  • Cecen, F., Erdincler, A., Kilic, E. 2003. Effect of powdered activated carbon addition on sludge dewaterability and substrate removal in landfill leachate treatment. Advances Environ Res 7:707–713.

    Article  CAS  Google Scholar 

  • Chang, J.-S., Lee, K.-S., Lin, P.-J. 2002. Biohydrogen production with fixed-bed bioreactors. Int J Hydrogen Energy 27:1167–1174.

    Article  CAS  Google Scholar 

  • COSO (Crude Oil Supply Outlook). 2007. Report to the Energy Watch Group EWG-Series No. 3/2007. http://www.energywatchgroup.org/fileadmin/global/pdf/EWG-Oilreport-10-2007.pdf. Accessed 2009.

    Google Scholar 

  • Das, D., Veziroglu, T.N. 2001. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28.

    Article  CAS  Google Scholar 

  • Demirbas, A. 1999. Evaluation of biomass materials as energy sources: upgrading of tea waste by briquetting process. Energy Sources 21:215–220.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2004. The importance of biomass. Energy Sources 26:361–366.

    Article  Google Scholar 

  • Demirbas, A. 2005a. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress Energy Combus Sci 31:171–192.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2005b. Options and trends of thorium fuel utilization in Turkey. Energy Sources 27:597–603.

    CAS  Google Scholar 

  • Demirbas, A. 2006a. Energy priorities and new energy strategies. Energy Edu Sci Technol 16:53–109.

    Google Scholar 

  • Demirbas, A. 2006b. The importance of natural gas in the world. Energy Sources Part B:413–420.

    Google Scholar 

  • Demirbas, A. 2007. Utilization of coals as sources of chemicals. Energy Sources 29:677–684.

    Article  CAS  Google Scholar 

  • Demirbas, A. 2008. Biodiesel: a realistic fuel alternative for diesel engines. Springer, London.

    Google Scholar 

  • Demirbas, A., Güllü, D. 1998. Acetic acid, methanol and acetone from lignocellulosics by pyrolysis. Energy Edu Sci Technol 2:102–110.

    Google Scholar 

  • de Vrije, T., de Haas, G.G., Tan, G.B., Keijsers, E.R.P., Claassen, P.A.M. 2002. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfıi. Int J Hydrogen Energy 27:1381–1390.

    Article  Google Scholar 

  • Dorf, R.C. 1977. Energy resources and policy. Addison-Wesley, Los Angeles, CA.

    Google Scholar 

  • Dry, M.E. 1999. Fischer–Tropsch reactions and the environment. Appl Catal A General 189:185–190.

    Article  CAS  Google Scholar 

  • EREC (European Renewable Energy Council). 2006. Renewable energy scenario by 2040, EREC Statistics, Brussels.

    Google Scholar 

  • EWEA (European Wind Energy Association). 2005. Report: large scale integration of wind energy in the European power supply: analysis, issues and recommendations. EWEA, Brussels, Belgium.

    Google Scholar 

  • Fridleifsson, I.B. 2001. Geothermal energy for the benefit of the people. Renew Sustain Energy Rev 5:299–312.

    Article  CAS  Google Scholar 

  • Garg, H.P., Datta, G. 1998. Global status on renewable energy, in Solar Energy Heating and Cooling Methods in Building, International Workshop, Iran University of Science and Technology, 19–20 May 1998.

    Google Scholar 

  • Goldemberg, J., Coelho, S.T. 2004. Renewable energy: traditional biomass vs. modern biomass. Energy Policy 32:711–714.

    Article  Google Scholar 

  • Gorman, J. 2002. Hydrogen: The next generation. Science News 162:235–236.

    Article  Google Scholar 

  • Haberl, H., Geissler, S. 2000. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol Eng 16:S111–S121.

    Article  Google Scholar 

  • Hacisalihoglu, B., Demirbas, A.H., Hacisalihoglu, S. 2008. Hydrogen from gas hydrate and hydrogen sulfide in the Black Sea. Energy Edu Sci Technol 21:109–115.

    CAS  Google Scholar 

  • Hamelinck, C.N., Faaij, A.P.C. 2002. Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111:1–22.

    Article  CAS  Google Scholar 

  • Han, S.-K., Shin, H.-S. 2004. Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577.

    Article  CAS  Google Scholar 

  • Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., Turkenburg, W. 2003. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133.

    Google Scholar 

  • Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L. 2005. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483.

    Article  CAS  Google Scholar 

  • IAEA (International Atomic Energy Agency). 2002. Thorium fuel utilization: options and trends. Proceedings of three IAEA meetings held in Vienna in 1997, 1998 and 1999.

    Google Scholar 

  • IEA (International Energy Annual). 2000. Energy Information Administration, US Department of Energy, Washington, DC.

    Google Scholar 

  • IEA (International Energy Agency). 2006. Key world energy statistics. IEA, Paris. http://www.iea.org/textbase/nppdf/free/2006/key2006.pdf. Accessed 2009.

    Google Scholar 

  • Kalogirou, A.S. 2004a. Environmental benefits of domestic solar energy systems. Energy Convers Manage 45:3075–3092.

    Article  CAS  Google Scholar 

  • Kalogirou, A.S. 2004b. Solar thermal collectors and applications. Progress Energy Combus Sci 30:231–295.

    Article  CAS  Google Scholar 

  • Kargi, F., Pamukoglu, M.Y. 2004a. Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation. Biores Technol 94:285–291.

    Article  CAS  Google Scholar 

  • Kargi, F., Pamukoglu, M.Y. 2004b. Repeated fed-batch biological treatment of pre-treated landfill leachate by powdered activated carbon addition. Enzyme Microbial Technol 34:422–428.

    Article  CAS  Google Scholar 

  • Kayabali, K. 1997. Engineering aspects of a novel landfill liner material: bentonite-amended natural zeolite. Eng Geology 46:105–114.

    Article  Google Scholar 

  • Kosugi, T., Pyong, S.P. 2003. Economic evaluation of solar thermal hybrid H2O turbine. Energy 28:185–198.

    Article  CAS  Google Scholar 

  • Kribus, A. 2002. A high-efficiency triple cycle for solar power generation. Solar Energy 72:1–11.

    Article  CAS  Google Scholar 

  • Kutz, M. (Ed.) 2007. Environmentally conscious alternative energy production. Wiley, Hoboken, NJ.

    Google Scholar 

  • Lee, S.-Y., Holder, G.D. 2001. Methane hydrates potential as a future energy source. Fuel Proc Technol 71:181–186.

    Article  CAS  Google Scholar 

  • Levin, D.B., Pitt, L., Love, M. 2004. Biohydrogen production: prospects and practical application. Int J Hydrogen Energy 29:173–185.

    Article  CAS  Google Scholar 

  • Mills, D. 2004. Advances in solar thermal electricity technology. Solar Energy 76:19–31.

    Article  Google Scholar 

  • Muneer, T., Asif, M., Munawwar, S. 2005. Sustainable production of solar electricity with particular reference to the Indian economy. Renew Sustain Energy Rev 9:444–473.

    Article  Google Scholar 

  • Nandi, R., Sengupta, S. 1998. Microbial production of hydrogen: an overview. Critical Rev Microbiol 24:61–84.

    Article  CAS  Google Scholar 

  • Nath, K., Das, D. 2003. Hydrogen from biomass. Current Sci 85:265–271.

    CAS  Google Scholar 

  • Pimentel, D., Moran, M.A., Fast, S., Weber, G., Bukantis, R., Balliett, L., Boveng, P., Cleveland, C., Hindman, S., Young, M., 1981. Biomass energy from crop and forest residues. Science 212:1110–1115.

    Article  Google Scholar 

  • Pokharel, S. 2003. Promotional issues on alternative energy technologies in Nepal. Energy Policy 31:307–318.

    Article  Google Scholar 

  • Ramage, J., Scurlock, J. 1996. Biomass, in Renewable energy-power for a sustainable future, G. Boyle (Ed.). Oxford University Press, Oxford.

    Google Scholar 

  • Reijnders, L. 2006. Conditions for the sustainability of biomass-based fuel use. Energy Policy 34:863–876.

    Article  Google Scholar 

  • Schobert, H.H., Song, C. 2002. Chemicals and materials from coal in the 21st century. Fuel 81:15–32.

    Article  CAS  Google Scholar 

  • Schulz, H. 1999. Short history and present trends of FT synthesis. Appl Catal A General 186:1–16.

    Article  CAS  Google Scholar 

  • Sorensen, H.A. 1983. Energy conversion systems. Wiley, New York.

    Google Scholar 

  • Thorn, J.D., John, C.T., Burstall, R.F. 1983. Nuclear power technology, W. Marshall (Ed.), Vol. 2, Chap. 17, pp. 377–381. Oxford University Press, Oxford.

    Google Scholar 

  • Trieb, F. 2000. Competitive solar thermal power stations until 2010: the challenge of market introduction. Renew Energy 19:163–171.

    Article  Google Scholar 

  • UNDP (United Nations Development Programme). 2004. World Energy Assessment 2004: Energy and the Challenge of Sustainability. UNDP, New York.

    Google Scholar 

  • Uygur, A., Kargi, F. 2004. Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. J Environ Manage 71: 9–14.

    Article  Google Scholar 

  • WEC (World Energy Council). 2004. Survey of energy resources. WEC, London.

    Google Scholar 

  • Xiao, C., Luo, H., Tang, R., Zhong, H. 2004. Solar thermal utilization in China. Renew Energy 29:1549–1556.

    Article  Google Scholar 

  • Van Ginkel, S.W., Logan, B. 2005. Increased biological hydrogen production with reduced organic loading. Water Res 39:3819–3826.

    Article  CAS  Google Scholar 

  • Veziroglu, T. 1975. Hydrogen energy, Part B. Plenum, New York.

    Google Scholar 

  • Vijayaraghavan, K., Soom, M.A.M. 2006. Trends in biohydrogen generation: a review. Environ Sci 3:255–271.

    Article  Google Scholar 

  • Zhang, Q.C., Zhao, K., Zhang, B.C., Wang, L.F., Shen, Z.L., Zhou, Z.J., Lu, D.Q., Xie, D.L., Li, B.F. 1998. New cermet solar coatings for solar thermal electricity applications. Solar Energy 64:109–114.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer London

About this chapter

Cite this chapter

(2009). Introduction. In: Biohydrogen. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-84882-511-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-511-6_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-510-9

  • Online ISBN: 978-1-84882-511-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics