Skip to main content

Clinical Research in the Postgenomic Era

  • Chapter
  • First Online:
Clinical Research Informatics

Abstract

Clinical research, being patient-oriented, is based predominantly on ­clinical data – symptoms reported by patients, observations of patients made by health-care providers, radiological images, and various metrics, including laboratory measurements that reflect physiological functions. Recently, however, a new type of data – genes and their products – has entered the picture, and the expectation is that given clinical conditions can ultimately be linked to the function of specific genes. The postgenomic era is characterized by the availability of the human genome as well as the complete genomes of numerous reference organisms. How genomic information feeds into clinical research is the topic of this chapter. We first review the molecules that form the “blueprint of life” and discuss the surrounding research methodologies. Then we discuss how genetic data are clinically integrated. Finally, we relate how this new type of data is used in different clinical research domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science. 2003;300:286–90.

    Article  PubMed  CAS  Google Scholar 

  2. Crick FH. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–63.

    PubMed  CAS  Google Scholar 

  3. Mitchell JA, Fomous C, Fun J. Challenges and strategies of the genetics home reference. J Med Libr Assoc. 2006;94:336–42.

    PubMed  Google Scholar 

  4. NCBI. Just the facts: a basic introduction to the science underlying NCBI resources – bioinformatics. Available from: http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html. Accessed Aug 2011.

  5. Luscombe NM, Greenbaum D, Gerstein M. What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med. 2001;40:346–58.

    PubMed  CAS  Google Scholar 

  6. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2008;36:D25–30.

    Article  PubMed  CAS  Google Scholar 

  7. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, et al. The sequence ontology: a tool for the unification of genome annotations. Genome Biol. 2005;6:R44.

    Article  PubMed  Google Scholar 

  8. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol. 2007;25:1251–5.

    Article  PubMed  CAS  Google Scholar 

  9. NCBI. GenBank. 2009. Accessed Aug 2011.

    Google Scholar 

  10. Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J, et al. The CATH classification revisited – architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res. 2009;37:D310–4.

    Article  PubMed  CAS  Google Scholar 

  11. Westbrook J, Ito N, Nakamura H, Henrick K, Berman HM. PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics. 2005;21:988–92.

    Article  PubMed  CAS  Google Scholar 

  12. RasMol. 2009. Accessed Aug 2011.

    Google Scholar 

  13. PyMOL. 2009. Accessed Aug 2011.

    Google Scholar 

  14. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered information at NCBI. Nucleic Acids Res. 2005;33:D54–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    Article  PubMed  CAS  Google Scholar 

  16. White JA, McAlpine PJ, Antonarakis S, Cann H, Eppig JT, Frazer K, et al. Guidelines for human gene nomenclature. HUGO Nomenclature Committee. Genomics. 1997;45:468–71.

    Article  PubMed  CAS  Google Scholar 

  17. Yoou MH. Case study of a patient with Parkinson’s disease. Taehan Kanho. 1991;30:56–60.

    PubMed  CAS  Google Scholar 

  18. Frezal J. Genatlas database, genes and development defects. C R Acad Sci III. 1998;321:805–17.

    PubMed  CAS  Google Scholar 

  19. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics. 1998;14:656–64.

    Article  PubMed  CAS  Google Scholar 

  20. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29:365–71.

    Article  PubMed  CAS  Google Scholar 

  21. Courtot M, Bug W, Gibson F, Lister AL, Malone J, Schober D et al. The OWL of biomedical investigations. 2008. Available from: http://webont.com/owled/2008/papers/owled2008eu_submission_38.pdf. Accessed Aug 2011.

  22. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  PubMed  CAS  Google Scholar 

  23. Oh JE, Krapfenbauer K, Fountoulakis M, Frischer T, Lubec G. Evidence for the existence of hypothetical proteins in human bronchial epithelial, fibroblast, amnion, lymphocyte, mesothelial and kidney cell lines. Amino Acids. 2004;26:9–18.

    Article  PubMed  CAS  Google Scholar 

  24. Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics. 2009;6:145–57.

    Article  PubMed  CAS  Google Scholar 

  25. Natale DA, Arighi CN, Barker WC, Blake J, Chang TC, Hu Z, et al. Framework for a protein ontology. BMC Bioinformatics. 2007;8:S1.

    Article  PubMed  Google Scholar 

  26. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the human metabolome database. Nucleic Acids Res. 2007;35:D521–6.

    Article  PubMed  CAS  Google Scholar 

  27. Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, et al. Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008;26:162–4.

    Article  PubMed  CAS  Google Scholar 

  28. International HapMap Consortium. The international HapMap project. Nature. 2003;426:789–96.

    Article  Google Scholar 

  29. NCBI. dbSNP. Available from: www.ncbi.nlm.nih.gov/projects/SNP/. Accessed Aug 2011.

  30. Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118(5):1590–605.

    Article  PubMed  CAS  Google Scholar 

  31. Kaiser J. DNA sequencing. A plan to capture human diversity in 1000 genomes. Science. 2008;319:395.

    Article  PubMed  CAS  Google Scholar 

  32. Personal genome project. 2009. Accessed Aug 2011.

    Google Scholar 

  33. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. 2009;327:78–81.

    Article  PubMed  Google Scholar 

  34. NHGRI. A catalog of published genome-wide association studies. 2009. Accessed Aug 2011.

    Google Scholar 

  35. Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–56.

    Article  PubMed  CAS  Google Scholar 

  36. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. The Human Gene Mutation Database: 2008 update. Genome Med. 2009;1:13.

    Article  PubMed  Google Scholar 

  37. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91:355–8.

    PubMed  CAS  Google Scholar 

  38. MITOMAP: a human mitochondrial genome database. 2009 [cited 2009]. Accessed Aug 2011.

    Google Scholar 

  39. The human variome project. 2009. Accessed Aug 2011.

    Google Scholar 

  40. Cotton RG, Auerbach AD, Axton M, Barash CI, Berkovic SF, Brookes AJ, et al. Genetics. The human variome project. Science. 2008;322:861–2.

    Article  PubMed  CAS  Google Scholar 

  41. Institute WTS. Cancer genome project. Available from: http://www.sanger.ac.uk/genetics/CGP. Accessed Aug 2011.

  42. NCI. Cancer genome anatomy project. 2009. Accessed Aug 2011.

    Google Scholar 

  43. NCI. FDA-NCI clinical proteomics program. Available from: http://home.ccr.cancer.gov/ncifdaproteomics/default.asp. Accessed Aug 2011.

  44. Martin-Sanchez F, Iakovidis I, Norager S, Maojo V, de Groen P, Van der Lei J, et al. Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care. J Biomed Inform. 2004;37:30–42.

    Article  PubMed  CAS  Google Scholar 

  45. Butte AJ, Kohane IS. Creation and implications of a phenome-genome network. Nat Biotechnol. 2006;24:55–62.

    Article  PubMed  CAS  Google Scholar 

  46. Chen DP, Weber SC, Constantinou PS, Ferris TA, Lowe HJ, Butte AJ. Clinical arrays of laboratory measures, or “clinarrays”, built from an electronic health record enable disease subtyping by severity. AMIA Annu Symp Proc. 2007;2007:115–9.

    Google Scholar 

  47. Butte AJ, Chen R. Finding disease-related genomic experiments within an international repository: first steps in translational bioinformatics. AMIA Annu Symp Proc. 2006;2006:106–10.

    Google Scholar 

  48. Shah NH, Jonquet C, Chiang AP, Butte AJ, Chen R, Musen MA. Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics. 2009;10:S1.

    Article  PubMed  Google Scholar 

  49. Murphy SN, Mendis ME, Berkowitz DA, Kohane I, Chueh HC. Integration of clinical and genetic data in the i2b2 architecture. AMIA Annu Symp Proc. 2006;2006:1040.

    Google Scholar 

  50. Deshmukh VG, Meystre SM, Mitchell JA. Evaluating the informatics for integrating biology and the bedside system for clinical research. BMC Med Res Methodol. 2009;9:70.

    Article  PubMed  Google Scholar 

  51. Lee JM, Ivanova EV, Seong IS, Cashorali T, Kohane I, Gusella JF, et al. Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in extra-mitochondrial energy metabolism. PLoS Genet. 2007;3:e135.

    Article  PubMed  Google Scholar 

  52. Himes BE, Wu AC, Duan QL, Klanderman B, Litonjua AA, Tantisira K, et al. Predicting response to short-acting bronchodilator medication using Bayesian networks. Pharmaco­genomics. 2009;10:1393–412.

    Article  PubMed  CAS  Google Scholar 

  53. NCI. caBIG: cancer biomedical informatics grid. 2009. Accessed Aug 2011.

    Google Scholar 

  54. Saltz J, Oster S, Hastings S, Langella S, Kurc T, Sanchez W, et al. CaGrid: design and implementation of the core architecture of the cancer biomedical informatics grid. Bioinformatics. 2006;22:1910–6.

    Article  PubMed  CAS  Google Scholar 

  55. Amin W, Parwani AV, Schmandt L, Mohanty SK, Farhat G, Pople AK, et al. National Mesothelioma Virtual Bank: a standard based biospecimen and clinical data resource to enhance translational research. BMC Cancer. 2008;8:236.

    Article  PubMed  Google Scholar 

  56. Sam LT, Mendonca EA, Li J, Blake J, Friedman C, Lussier YA. PhenoGO: an integrated resource for the multiscale mining of clinical and biological data. BMC Bioinformatics. 2009;10:S8.

    Article  PubMed  Google Scholar 

  57. Liu CC, Hu J, Kalakrishnan M, Huang H, Zhou XJ. Integrative disease classification based on cross-platform microarray data. BMC Bioinformatics. 2009;10:S25.

    Article  PubMed  Google Scholar 

  58. Pathak J, Solbrig HR, Buntrock JD, Johnson TM, Chute CG. LexGrid: a framework for representing, storing, and querying biomedical terminologies from simple to sublime. J Am Med Inform Assoc. 2009;16:305–15.

    Article  PubMed  Google Scholar 

  59. Hewett M, Oliver DE, Rubin DL, Easton KL, Stuart JM, Altman RB, et al. PharmGKB: the Pharmacogenetics Knowledge Base. Nucleic Acids Res. 2002;30:163–5.

    Article  PubMed  CAS  Google Scholar 

  60. Shabo A. The implications of electronic health record for personalized medicine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005;149(2):251–8.

    PubMed  Google Scholar 

  61. CDISC. Clinical data interchange standards consortium (CDISC). 2009. Available from: http://www.cdisc.org/. Accessed Aug 2011.

  62. BRIDG. Biomedical Research Integrated Domain Group (BRIDG). 2009. Accessed Aug 2011.

    Google Scholar 

  63. Schenk PW, van Fessem MA, Verploegh-Van Rij S, Mathot RA, van Gelder T, Vulto AG, et al. Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry. 2008;13:597–605.

    Article  PubMed  CAS  Google Scholar 

  64. Loi S, Buyse M, Sotiriou C, Cardoso F. Challenges in breast cancer clinical trial design in the postgenomic era. Curr Opin Oncol. 2004;16:536–41.

    Article  PubMed  Google Scholar 

  65. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20:719–26.

    Article  PubMed  CAS  Google Scholar 

  66. Jahromi MM, Eisenbarth GS. Cellular and molecular pathogenesis of type 1A diabetes. Cell Mol Life Sci. 2007;64:865–72.

    Article  PubMed  CAS  Google Scholar 

  67. Waggoner DJ, Pagon RA. Internet resources in Medical Genetics. Curr Protoc Hum Genet. 2009;7: Chapter 9:Unit 9.12.

    Google Scholar 

  68. Leich E, Hartmann EM, Burek C, Ott G, Rosenwald A. Diagnostic and prognostic significance of gene expression profiling in lymphomas. APMIS. 2007;115:1135–46.

    Article  PubMed  CAS  Google Scholar 

  69. Codony C, Crespo M, Abrisqueta P, Montserrat E, Bosch F. Gene expression profiling in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol. 2009;22:211–22.

    Article  PubMed  CAS  Google Scholar 

  70. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106:14016–21.

    Article  PubMed  CAS  Google Scholar 

  71. Hoffman AC, Danenberg KD, Taubert H, Danenberg PV, Wuerl P. A three-gene signature for outcome in soft tissue sarcoma. Clin Cancer Res. 2009;15:5191–8.

    Article  PubMed  CAS  Google Scholar 

  72. Gold KA, Kim ES. Role of molecular markers and gene profiling in head and neck cancers. Curr Opin Oncol. 2009;21:206–11.

    Article  PubMed  CAS  Google Scholar 

  73. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT. MicroRNA profiling of human kidney cancer subtypes. Int J Oncol. 2009;35:109–14.

    Article  PubMed  CAS  Google Scholar 

  74. Yoshihara K, Tajima A, Komata D, Yamamoto T, Kodama S, Fujiwara H, et al. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 2009;100:1421–8.

    Article  PubMed  CAS  Google Scholar 

  75. Volchenboum SL, Cohn SL. Are molecular neuroblastoma classifiers ready for prime time? Lancet Oncol. 2009;10:641–2.

    Article  PubMed  Google Scholar 

  76. Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, et al. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol. 2009;10(7):663–71.

    Article  PubMed  CAS  Google Scholar 

  77. Ugurel S, Utikal J, Becker JC. Tumor biomarkers in melanoma. Cancer Control. 2009;16(3):219–24.

    PubMed  Google Scholar 

  78. Kim C, Taniyama Y, Paik S. Gene expression-based prognostic and predictive markers for breast cancer: a primer for practicing pathologists. Arch Pathol Lab Med. 2009;133:855–9.

    PubMed  CAS  Google Scholar 

  79. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800.

    Article  PubMed  CAS  Google Scholar 

  80. Rabson AB, Weissmann D. From microarray to bedside: targeting NF-kappaB for therapy of lymphomas. Clin Cancer Res. 2005;11:2–6.

    PubMed  CAS  Google Scholar 

  81. Fang KC. Clinical utilities of peripheral blood gene expression profiling in the management of cardiac transplant patients. J Immunotoxicol. 2007;4:209–17.

    Article  PubMed  CAS  Google Scholar 

  82. XDx. XDx’s AlloMap(R) gene expression test cleared by U.S. FDA for heart transplant recipients. 2008 [cited 2009]. Accessed Aug 2011.

    Google Scholar 

  83. Khatri P, Sarwal MM. Using gene arrays in diagnosis of rejection. Curr Opin Organ Transplant. 2009;14:34–9.

    Article  PubMed  Google Scholar 

  84. van Baarsen LG, Bos CL, van der Pouw Kraan TC, Verweij CL. Transcription profiling of rheumatic diseases. Arthritis Res Ther. 2009;11:207.

    Article  PubMed  Google Scholar 

  85. Bauer JW, Bilgic H, Baechler EC. Gene-expression profiling in rheumatic disease: tools and therapeutic potential. Nat Rev Rheumatol. 2009;5:257–65.

    Article  PubMed  CAS  Google Scholar 

  86. Lin B, Malanoski AP. Resequencing arrays for diagnostics of respiratory pathogens. Methods Mol Biol. 2009;529:231–57.

    Article  PubMed  CAS  Google Scholar 

  87. Roche. Individualize drug dosing based on metabolic profiling with the AmpliChip CYP450 test. 2009 [cited 2009]. Accessed Aug 2011.

    Google Scholar 

  88. 23andMe. 23andMe: Genetics just got personal. 2009. Accessed Aug 2011.

    Google Scholar 

  89. Navigenics. There’s DNA. And then there’s what you do with it. 2009. Accessed Aug 2011.

    Google Scholar 

  90. deCODEme. deCODE your health. 2009. Accessed Aug 2011.

    Google Scholar 

  91. PatientsLikeMe. PatientsLikeMe: patients helping patients live better every day. Available from: http://www.patientslikeme.com/. Accessed Aug 2011.

  92. Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16:166–77.

    PubMed  CAS  Google Scholar 

  93. Cannon-Albright LA, Thomas A, Goldgar DE, Gholami K, Rowe K, Jacobsen M, et al. Familiality of cancer in Utah. Cancer Res. 1994;54:2378–85.

    PubMed  CAS  Google Scholar 

  94. Hamshere ML, Schulze TG, Schumacher J, Corvin A, Owen MJ, Jamra RA, et al. Mood-incongruent psychosis in bipolar disorder: conditional linkage analysis shows genome-wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disord. 2009;11:610–20.

    Article  PubMed  Google Scholar 

  95. Hamshere ML, Segurado R, Moskvina V, Nikolov I, Glaser B, Holmans PA. Large-scale linkage analysis of 1302 affected relative pairs with rheumatoid arthritis. BMC Proc. 2007;1:S100.

    Article  PubMed  Google Scholar 

  96. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54:201–11.

    Article  PubMed  CAS  Google Scholar 

  97. de la Fuente M, Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine (Lond). 2008;3:845–57.

    Article  Google Scholar 

  98. Emerich DF, Thanos CG. Targeted nanoparticle-based drug delivery and diagnosis. J Drug Target. 2007;15:163–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephane M. Meystre M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Meystre, S.M., Narus, S.P., Mitchell, J.A. (2012). Clinical Research in the Postgenomic Era. In: Richesson, R., Andrews, J. (eds) Clinical Research Informatics. Health Informatics. Springer, London. https://doi.org/10.1007/978-1-84882-448-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-448-5_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-447-8

  • Online ISBN: 978-1-84882-448-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics