Skip to main content

Part of the book series: Advances in Industrial Control ((AIC))

  • 2254 Accesses

Abstract

Piezoelectric actuators have received increasing attention in recent years along with the emergence of new technologies, such as nanotechnology and biotechnology, which require precision control in an unprecedented demand. Owing to many inherent merits of these actuators, such as high resolution of displacement, high stiffness, and fast response, piezoelectric actuators have been broadly used in many applications requiring fine precision control. The application of piezoelectric actuators is further fueled by the trend of miniaturization in applied research and in the industry nowadays.

The field of piezoelectric actuators is now an interesting subject of research worth spending millions of dollars annually. Because of the superior characteristics of piezoelectric actuators in terms of precision, the term piezoelectric actuator has been closely associated with high-precision actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braembussche PV, Swevers J, Brussel HV, Vanherck V (1996) Accurate tracking control of linear synchronous motor machine tool axes. Mechatronics 6(5):507–521

    Article  Google Scholar 

  2. Budinger M, Rouchon JF, Nogarede B (2004) Analytical modeling for the design of piezoelectric rotating-mode motor. IEEE/ASME Trans Mechatron 9(1):1–9

    Article  Google Scholar 

  3. Chen XB, Kai J (2004) Modeling of positive-displacement fluid dispensing processes. IEEE Trans Electron Packag Manuf 27(3):157–163

    Article  Google Scholar 

  4. Fleming AJ, Moheimani SOR (2003) Precision current and charge amplifiers for driving highly capacitive piezoelectric loads. Electron Lett 39(3):282–284

    Article  Google Scholar 

  5. Fleming AJ, Moheimani SOR (2005) A grounded load charge amplifier for reducing hysteresis in piezoelectric tube scanners. Rev Sci Instrum 76(7)

    Google Scholar 

  6. Ge P, Jouaneh M (1996) Tracking control of a piezoceramic actuator. IEEE Trans Control Syst Technol 4:209–216

    Article  Google Scholar 

  7. Hayes DJ, Wallace DB, Cox WR (1999) MicroJet printing of solder and polymers for multi-chip modules and chip-scale packages. In: IMAPS intern conf high density packaging MCMs, pp 1–6

    Google Scholar 

  8. Huang S, Lee TH, Tan KK (2002) Robust adaptive numerical compensation for friction and force ripple in permanent magnet linear motors. IEEE Trans Magn 38(1):221–228

    Article  MathSciNet  Google Scholar 

  9. Hwang CL, Jan C (2003) A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis. IEEE Trans Neural Netw 14(1):66–78

    Article  Google Scholar 

  10. IEEE Standard Board (1987) IEEE standard on piezoelectricity

    Google Scholar 

  11. Newcomb CV, Flinn I (1982) Improving the linearity of piezoelectric ceramic actuators. Electron Lett 18(11):442–444

    Article  Google Scholar 

  12. Pernette E, Henein S, Magnani I, Clavel R (1997) Design of parallel robots in microrobotics. Robotica 15:417–420

    Article  Google Scholar 

  13. Saggere L, Kota S, Crary SB (1994) A new design for suspension of linear microactuators. Proc Dyn Syst Control 55(2):671–675

    Google Scholar 

  14. Smith S (2000) Flexures, elements of elastic mechanisms. Taylor & Francis, London

    Google Scholar 

  15. Szczech JB, Megaridis CM, Gamota DR, Zhang J (2002) Fine-line conductor manufacturing using drop-on-demand PZT printing technology. IEEE Trans Electron Packag Manuf 25(1):26–33

    Article  Google Scholar 

  16. Trease BP, Moon Y-M, Kota S (2005) Design of large-displacement compliant joints. Trans ASME 127:788–798

    Article  Google Scholar 

  17. Yao B, Xu L (2000) Adaptive robust precision motion control of linear motors with ripple force compensations: Theory and experiments. In: Proc 2000 IEEE inter conf contr app, Anchorage, Alaska, USA

    Google Scholar 

  18. Yao B, Xu L (2002) Adaptive robust motion control of linear motors for precision manufacturing. Mechatronics 12:595–616

    Article  Google Scholar 

  19. Yoon KJ, Park KH, Lee SK, Goo NS, Park HC (2004) Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators. Smart Mater Struct 13(3):459–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Kiong Tan Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tan, K.K., Putra, A.S. (2011). Piezoelectric Drives. In: Drives and Control for Industrial Automation. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-84882-425-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-425-6_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-424-9

  • Online ISBN: 978-1-84882-425-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics