Skip to main content

Role of Magnetic Resonance Imaging in Aortic Disease

  • Chapter
The ESC Textbook of Cardiovascular Imaging

Abstract

MRI is a non-invasive imaging technique that permits the most complete study of aortic disease. It offers morphological, functional, and biochemical information. Technological advances, e.g. the implementation of faster gradients, newer sequences, and ultrafast MR angiography, have led to MRI being the modality of choice for imaging aortic diseases. Conventional ECG-gated spin-echo imaging and cine gradient-echo have earned MRI the reputation of being the ideal tool for evaluating the aorta. Contrast-enhanced 3D MR angiography permits rapid acquisition and multi-planar imaging with minimal dephasing artefacts. Phase-contrast imaging is another technique that enables flow in the great vessels to be evaluated with accurate quantification of peak velocity and forward and regurgitant flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. François CJ, Carr JC. MRI of the thoracic aorta. Cardiol Clin. 2007;25:171–184

    Article  PubMed  Google Scholar 

  2. Russo V, Renzulli, M Buttazzi K, et al Acquired of the thoracic aorta: role of MRI and MRA. Eur Radiol. 2006;16:852–865

    Article  PubMed  Google Scholar 

  3. Burman ED, Keegan J, Kilmer PJ. Aortic root measurement by cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2008;1: 104–113

    Article  PubMed  Google Scholar 

  4. Fayad ZA, Nahar T, Fallon JT, et al In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta. Circulation. 2000;101:2503–2509

    CAS  PubMed  Google Scholar 

  5. Corti R, Fayad ZA, Fuster V, et al Effects of lipid–lowering by simvastatin on human atherosclerotic lesions. A longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation. 2001;104:249–252

    Article  CAS  PubMed  Google Scholar 

  6. Briley-Saebo KC, Shaw PX, Mulder WJ, et al Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation. 2008;117:3206–3215

    Article  CAS  PubMed  Google Scholar 

  7. Briley-Saebo KC, Mulder WJ, Mani V, et al Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging. 2007;26:460–479

    Article  PubMed  Google Scholar 

  8. Kawamoto S, Bluemke DA, Traill TA, et al Thoracoabdominal aorta in Marfan syndrome: MR imaging findings of progression of vasculopathy after surgical repair. Radiology. 1997;203:727–732

    CAS  PubMed  Google Scholar 

  9. Krinsky G. Gadolinium-enhanced three-dimensional magnetic resonance angiography of the thoracic aorta and arch vessels. A review. Invest Radiol. 1998;33:587–605

    Article  CAS  PubMed  Google Scholar 

  10. Nollen GJ, Groenink M, Tijssen JGP, et al Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J. 2004;25:1146–1152

    Article  PubMed  Google Scholar 

  11. Groeninck M, de Roos A, Mudder BJ, et al Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol. 1998;82:203–208

    Article  Google Scholar 

  12. Grotenhuis HB, Ottenkamp J, Westenberg JM, et al Reduced aortic elasticity and dilatation are associated with aortic regurgitation and left ventricular hypertrophy in nonstenotic bicuspid aortic valve patients. J Am Coll Cardiol. 2007;49:1660–1665

    Article  PubMed  Google Scholar 

  13. Kunz RP, Oberholzer K, Kuroczynski W, et al Assessment of chronic aortic dissection: contribution of different ECG-gated breath-hold MRI techniques. Am J Roentgenol. 2004;182:1319–1326

    Google Scholar 

  14. Goldfarb JW, Holland AE, Heijstraten FM, et al Cardiac-synchronized gadolinium-enhanced MR angiography: preliminary experience for the evaluation of the thoracic aorta. Magn Reson Imaging. 2006;24;241–248

    Article  PubMed  Google Scholar 

  15. Nienaber CA, von Kodolitsch Y, Petersen B, et al Intramural hemorrhage of the thoracic aorta: diagnostic and therapeutic implications. Circulation. 1995;92:1465–1472

    CAS  PubMed  Google Scholar 

  16. Fattori R, Celletti F, Descovich B, et al Evolution of post-traumatic aneurysm in the subacute phase: magnetic resonance imaging follow-up as a support of the surgical timing. Eur J Cardiothorac Surg. 1998;13:582–587

    Article  CAS  PubMed  Google Scholar 

  17. Choe YH, Kim DK, Koh EM, et al Takayasu arteritis: diagnosis with MR imaging and MR angiography in acute and chronic active stages. J Magn Reson Imaging. 1999;10:751–757

    Article  CAS  PubMed  Google Scholar 

  18. Meller J, Grabbe E, Becker W, et al Value of F-18 FDG hybrid camera PET and MRI in early Takayasu aortitis. Eur Radiol. 2003;13;400–405

    CAS  PubMed  Google Scholar 

  19. Mohiaddin RH, Kilner PJ, Rees, et al Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol. 1993;22;1515–1521

    Article  CAS  PubMed  Google Scholar 

  20. Shellock FG, Spinazzi A. MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis. Am J Roentgenol. 2008;191:1129–1139

    Article  Google Scholar 

  21. Shunk KA, Garot J, Atalar E, Lima JA. Transesophageal magnetic resonance imaging of the aortic arch and descending thoracic aorta in patients with aortic aterosclerosis. J Am Coll Cardiol. 2001;37:2031–2035

    Article  CAS  PubMed  Google Scholar 

  22. Farrar CT, Wedden VJ, Ackerman JL. Cylindrical meanderline radiofrequency coil for intravascular magnetic resonance studies of atherosclerotic plaque. Magn Reson Med. 2005;53:226–230

    Article  PubMed  Google Scholar 

  23. Shiga T, Wajima Z, Apfel CC, et al Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection. Systematic review and meta-analysis. Arch Intern Med. 2006;166:1350–1356

    Article  PubMed  Google Scholar 

  24. Hagan PG, Nienaber CA, Isselbacher EM, et al The international registry of acute aortic dissection (IRAD). JAMA. 2000;283:897–903

    Article  CAS  PubMed  Google Scholar 

  25. Davies RR, Goldstein LJ, Coady, et al Yearly ruptured or dissection rates for thoracic aortic aneurysms; simple prediction based on size. Ann Thorac Surg. 2002;73:17–27

    Article  PubMed  Google Scholar 

  26. Fattori R, Bacchi-Reggiani L, Bertaccini P, et al Evolution of aortic dissection after surgical repair. Am J Cardiol. 2000;86:868–872

    Article  CAS  PubMed  Google Scholar 

  27. Tsai TT, Evangelista A, Nienaber CA, et al Partial thrombosis of the false lumen in patients with acute type B aortic dissection. N Engl J Med. 2007;357:349–359

    Article  CAS  PubMed  Google Scholar 

  28. Inoue T, Watanabe S, Sakurada H, et al Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissection using velocity-encoded cine magnetic resonance imaging. Jpn Circ J. 2000;64:760–764

    Article  CAS  PubMed  Google Scholar 

  29. Strotzer M, Aebert H, Lehhart M, et al Morphology and hemodynamics in dissection of the descending aorta. Assessment with MR imaging. Acta Radiologica. 2000;41:594–600

    Article  CAS  PubMed  Google Scholar 

  30. Evangelista A, Domínguez R, Sebastià C, et al Long-term follow-up of aortic intramural hematoma. Predictors of outcome. Circulation. 2003;108:583–589

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Pr Hervé Rousseau (CHU Rangueil, Toulouse), Pr Jean-Nicolas Dacher (CHU Rouen), and Dr. Victor Pineda (IDI, Hospital Vall d´Hebron, Barcelona) for their contribution to the iconographic data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Video 33.4

SSFP cine MR sequence of the thoracic aorta in a patient with a huge aneurysm of the ascending aorta

Video 33.6

Corresponding SSFP cine MR in the same patient with Type A acute aortic dissection and an intimal flap

Video 33.7

SSFP cine MR in the 4-chamber view in a patient with Type A acute aortic dissection and pleural effusion

Video 33.13

3D reconstructed view of MRA of the thoracic aorta in the same patient as in Fig. 33.13

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited Limited

About this chapter

Cite this chapter

Evangelista, A., Garot, J. (2010). Role of Magnetic Resonance Imaging in Aortic Disease. In: Zamorano, J.L., Bax, J.J., Rademakers, F.E., Knuuti, J. (eds) The ESC Textbook of Cardiovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-421-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-421-8_33

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-420-1

  • Online ISBN: 978-1-84882-421-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics