Skip to main content

Abstract

Dilated cardiomyopathies, either familial-genetic or non-familial-genetic, in origin are characterized by dilatation of one or both ventricles and/or ventricular systolic dysfunction. The modern imaging techniques allow assessing the primary myocardial defect in force generation as well as abnormalities in the metabolic, perfusion, and structural patterns. The diagnostic and the prognostic role of the three most used techniques (echocardiography, nuclear technologies, and cardiac magnetic resonance, CMR) are discussed with the purpose of integrating the specific information that can be achieved by each of them.

According to a recent statement of the European Society of Cardiology, dilated cardiomyopathy (DCM) is defined by the presence of left ventricular dilatation and left ventricular systolic dysfunction in the absence of abnormal loading conditions (hypertension, valve disease) or coronary artery disease (CAD) sufficient to cause global systolic impairment. Right ventricular dilation and dysfunction may be present, but are not necessary for the diagnosis.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Elliott P, Andersson B, Arbustini E, et al Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008;29:270–276

    Article  PubMed  Google Scholar 

  2. MacRae CA. Genetics and dilated cardiomyopathy: limitations of candidate gene strategies. Eur Heart J. 2000;21:1817–1819

    Article  CAS  PubMed  Google Scholar 

  3. Senior R, Becher H, Monaghan M, et al Contrast echocardiography: evidence-based guidelines for clinical use recommended by European Association of Echocardiography. Eur J Echocardiogr. 2009;10(2):194–212

    Article  PubMed  Google Scholar 

  4. Mor-Avi V, Jenkins A, Kühl HP, et al Real-time 3-dimensional echocardiographic quantification of LV Volumes. JACC Imaging. 2008;1:413–423

    Article  Google Scholar 

  5. Dutka DP, Donnelly JE, Palka P, et al Echocardiographic characterization of cardiomyopathy in Friedreich’s ataxia with tissue doppler echocardiographically derived myocardial velocity gradients. Circulation. 2000;102:1276–1282

    CAS  PubMed  Google Scholar 

  6. Amundsen BH, Helle-Valle T, Edvardsen T, et al Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol. 2006;47:789–793

    Article  PubMed  Google Scholar 

  7. Giatrakos N, Kinali, M, Stephens DA, et al Cardiac tissue velocities and strain rate in the early detection of myocardial dysfunction of asymptomatic boys with Duchenne muscular dystrophy; relation to clinical outcome. Heart. 2006:92;840–842

    Article  CAS  PubMed  Google Scholar 

  8. Klocke FJ, Baird MG, Bateman T, et al ACC/AHA/ASNC Guidelines for the clinical use of cardiac radionuclide imaging. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). J Am Coll Cardiol. 2003;42(7):1318–1333

    Article  PubMed  Google Scholar 

  9. Neglia D, Michelassi C, Trivieri MG, et al Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186–193

    Article  PubMed  Google Scholar 

  10. van den Heuvel AFM, van Veldhuisen DJ, van der Wall EE, et al Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;35:19–28

    Article  Google Scholar 

  11. Dávila-Román VG, Vedala G, Herrero P, et al Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:271–277

    Article  PubMed  Google Scholar 

  12. Tuunanen H, Engblom E, Naum A, et al Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation. 2008;118:1250–1258

    Article  CAS  PubMed  Google Scholar 

  13. Bengel FM, Permanetter B, Ungerer M, et al Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med. 2002;29(2):198–202

    Article  CAS  Google Scholar 

  14. Knaapen P, van Campen LM, de Cock CC, et al Effects of cardiac resynchronization therapy on myocardial perfusion reserve. Circulation. 2004;110:646–651

    Article  PubMed  Google Scholar 

  15. Lindner O, Sörensen J, Vogt J, et al Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy. J Nucl Med. 2006;47:378–383

    PubMed  Google Scholar 

  16. Hesse B, Lindhardt TB, Acampa W, et al EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging. 2008;35:851–885

    Article  CAS  PubMed  Google Scholar 

  17. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging. 2003;17:323–329

    Article  PubMed  Google Scholar 

  18. Assomull RG, Prasad SK, Lyne J, et al Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006;48:1977–1985

    Article  PubMed  Google Scholar 

  19. Nazarian S, Bluemke DA, Lardo AC, et al Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112:2821–2825

    Article  PubMed  Google Scholar 

  20. Wu KC, Weiss RG, Thiemann DR, et al Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–2421

    Article  PubMed  Google Scholar 

  21. Ashford MW Jr, Liu W, Lin SJ, et al Occult cardiac contractile dysfunction in dystrophin-deficient children revealed by cardiac magnetic resonance strain imaging. Circulation. 2005;112:2462–2467

    Article  PubMed  Google Scholar 

  22. Puchalski MD, Williams RV, Askovich B, et al Late gadolinium enhancement: precursor to cardiomyopathy in Duchenne muscular dystrophy? Int J Cardiovasc Imaging. 2009;25:57–63

    Article  PubMed  Google Scholar 

  23. Yilmaz A, Gdynia HJ, Baccouche H, et al Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J Cardiovasc Magn Reson. 2008;8:50

    Article  Google Scholar 

  24. Aretz HT, Billingham ME, Edwards WD, et al Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol. 1987;1:3–14

    CAS  PubMed  Google Scholar 

  25. Hyodo E, Hozumi T, Takemoto Y, et al Early detection of cardiac involvement in patients with Sarcoidosis by a non-invasive method with ultrasonic tissue characterisation. Heart. 1987;90(11):1275–1280

    Article  Google Scholar 

  26. Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol. 2006;48:2085–2093

    Article  PubMed  Google Scholar 

  27. Mahrholdt H, Goedecke C, Wagner A, et al Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109:1250–1258

    Article  PubMed  Google Scholar 

  28. Abdel-Aty H, Boyé P, Zagrosek A, Wassmuth R, et al Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol. 2005;45:1815–1822

    Article  PubMed  Google Scholar 

  29. Rochitte CE, Oliveira PF, Andrade JM, et al Myocardial delayed enhancement by magnetic resonance imaging in patients with Chagas’ disease: a marker of disease severity. J Am Coll Cardiol. 2005;46:1553–1558

    Article  PubMed  Google Scholar 

  30. Smedema JP, Snoep G, van Kroonenburgh MP, et al Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45:1683–1690

    Article  PubMed  Google Scholar 

  31. Petersen SE, Selvanayagam JB, Wiesmann F, et al Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46:101–105

    Article  PubMed  Google Scholar 

  32. Germans T, Wilde AA, Dijkmans PA, et al Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of left ventricular hypertrophic cardiomyopathy mutations. J Am Coll Cardiol. 2006;48:2518–2523

    Article  PubMed  Google Scholar 

  33. Tsuchihashi K, Ueshima K, Uchida T, et al Angina pectoris-myocardial infarction investigations in Japan. Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. J Am Coll Cardiol. 2001;38(1):11–18

    Article  CAS  PubMed  Google Scholar 

  34. Bybee KA, Kara T, Prasad A, et al Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141(11):858–865

    PubMed  Google Scholar 

  35. Eite I, Behrendt F, Schindler K, et al Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J. 2008;29: 2651–2659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lombardi .

Editor information

Editors and Affiliations

Appendices

Video 24.1

Apical 4-chamber view from a patient who presented with an out of hospital cardiac arrest. The LV is not dilated with full-thickness myocardium and marked global hypokinesia. Contrast-enhanced CMR did not show any myocardial scar

Video 24.2

Real-time 3D echocardiographic images from a patient with dilated cardiomyopathy. With some simple identification of endocardial borders, the system calculates the left ventricular volumes automatically

Video 24.3

Report of a PET perfusion study (13NH3 as a flow tracer) combined with a CT coronary angiography study performed at IFC-CNR and FGM in Pisa. The study was done in a male patient, 60 years old, with cardiovascular risk factors, recent onset of LBBB and moderate LV dysfunction (LVEF 33% at 2D-Echo) for differential diagnosis between ischaemic or primitive dilated cardiomyopathy. The video clip shows a fusion image of volumetric reconstruction of perfusion PET data obtained during dipyridamole stress and of reconstructed CT angiography data in the diastolic phase of the cardiac cycle. A clear and wide perfusion defect is evident involving the lateral-inferior wall of the left ventricle in the presence of angiographycally normal epicardial coronary vessels. A similar flow defect was also evident in resting conditions. Absolute myocardial blood flow was severely reduced in all myocardial regions both at rest (range 0.35–0.51 mL/min/g, Normal Values >0.6 mL/min/g) and during dipyridamole stress (range 0.52–0.72 mL/min/g) with reduced myocardial perfusion reserve (range 1.38–1.52, normal values >2.5). The diagnosis of primitive dilated cardiomyopathy associated with coronary micro-vascular dysfunction was confirmed at invasive catheterization

Video 24.4

Acute myocarditis. Cine images (SSFP) in 4-chamber view demonstrating slightly dilated LV with EF 47%

Video 24.5

Chagas’ disease. Cine images/SSFP) on 2-chamber view. The LV is dilated with manifestation of several small aneurysms and a large apical aneurysm with trans-mural hyper-enhancement due to fibrosis

Video 24.6

Patient with non-compaction cardiomyopathy (cine images- SSFP - short axis) demonstrating meshwork of trabeculae predominantly in the apex. The end-diastolic non-compacted to compacted ratio exceeds 2.3

Video 24.7

Patient with non-compaction cardiomyopathy (cine images - SSFP - vertical long axis) demonstrating meshwork of ­trabeculae predominantly in the apex. The end-diastolic noncompacted to compacted ratio exceeds 2.3

Video 24.8

Myocardial crypts in the proximal infero-septal wall as observed in genetically proven carrier of hypertrophic cardiomyopathy mutation (cine images -SSFP - modified 2-chamber view)

Video 24.9

Myocardial crypts in the proximal infero-septal wall as observed in genetically proven carrier of hypertrophic cardiomyopathy mutation (cine images - SSFP - short axis view)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited Limited

About this chapter

Cite this chapter

Lombardi, M., Neglia, D., Nihoyannopoulos, P., van Rossum, A.C. (2010). Dilated Cardiomyopathy. In: Zamorano, J.L., Bax, J.J., Rademakers, F.E., Knuuti, J. (eds) The ESC Textbook of Cardiovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-421-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-421-8_24

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-420-1

  • Online ISBN: 978-1-84882-421-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics