Skip to main content

CMR and Detection of Coronary Artery Disease

  • Chapter
The ESC Textbook of Cardiovascular Imaging
  • 2278 Accesses

Abstract

Dobutamine-cardiovascular magnetic resonance (dobutamine-CMR) and perfusion-CMR are readily available to assess patients with suspected coronary artery disease or to determine the haemodynamic relevance of patients with intermediate coronary artery stenoses. Both tests have good diagnostic accuracy (with dobutamine-CMR being more specific and perfusion-CMR being more sensitive) and provide prognostically relevant information. Patients with normal MR stress studies show an excellent prognosis (0.7% event rate per year for the first 2 years) and in most patients with negative studies, no further examinations need to be performed. In combination with scar imaging and the assessment of LV and RV function and mass, a rapid and complete work-up of a large group of patients can be offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hendel RC, Patel MR, Kramer CM, et al ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7): 1475–1497

    Article  PubMed  Google Scholar 

  2. Iskander S, Iskandrian AE. Risk assessment using single–photon emission computed tomographic technetium–99m sestamibi imaging. J Am Coll Cardiol. 1998;32(1):57–62

    Article  CAS  PubMed  Google Scholar 

  3. Silber S, Albertsson P, Aviles F, et al Guidelines for percutaneous coronary interventions. Eur Heart J. 2005;26:804–847

    Article  PubMed  Google Scholar 

  4. Kitagawa K, Sakuma H, Nagata M, et al Diagnostic accuracy of stress myocardial perfusion MRI and late gadolinium–enhanced MRI for detecting flow–limiting coronary artery disease: A multicenter study. Eur Radiol. 2008;18:2808–2816

    Article  PubMed  Google Scholar 

  5. Boden WE, O’Rourke RA, Teo KK, et al Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–1516

    Article  CAS  PubMed  Google Scholar 

  6. Paetsch I, Jahnke C, Wahl A, et al Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation. 2004; 110(7):835–842

    Article  CAS  PubMed  Google Scholar 

  7. Nagel E, Lorenz C, Baer F, et al Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson. 2001;3(3):267–281

    Article  CAS  PubMed  Google Scholar 

  8. Wahl A, Paetsch I, Gollesch A, et al Safety and feasibility of high–dose dobutamine–atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. Eur Heart J. 2004;25(14):1230–1236

    Article  PubMed  Google Scholar 

  9. Nagel E, Lehmkuhl HB, Bocksch W, et al Noninvasive diagnosis of ischemia–induced wall motion abnormalities with the use of high–dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation. 1999;99(6):763–770

    CAS  PubMed  Google Scholar 

  10. Wahl A, Paetsch I, Roethemeyer S, et al High–dose dobutamine–atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology. 2004;233(1):210–216

    Article  PubMed  Google Scholar 

  11. Hundley WG, Hamilton CA, Thomas MS, et al Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation. 1999;100(16):1697–1702

    CAS  PubMed  Google Scholar 

  12. Paetsch I, Jahnke C, Ferrari VA, et al Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. Eur Heart J. 2006;27(12):1459–1464

    Article  PubMed  Google Scholar 

  13. Mandapaka S, Hundley WG. Dobutamine cardiovascular magnetic resonance: a review. J Magn Reson Imaging. 2006;24(3):499–512

    Article  PubMed  Google Scholar 

  14. Wellnhofer E, Olariu A, Klein C, et al Magnetic resonance low–dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation. 2004;109(18): 2172–2174

    Article  PubMed  Google Scholar 

  15. Bucciarelli–Ducci C, Wu E, Lee DC, et al Contrast–enhanced cardiac magnetic resonance in the evaluation of myocardial infarction and myocardial viability in patients with ischemic heart disease. Curr Probl Cardiol. 2006;31(2):128–168

    Article  PubMed  Google Scholar 

  16. Hundley WG, Morgan TM, Neagle CM, et al Magnetic resonance imaging determination of cardiac prognosis. Circulation. 2002; 106(18):2328–2333

    Article  PubMed  Google Scholar 

  17. Jahnke C, Nagel E, Gebker R, et al Prognostic value of cardiac magnetic resonance stress tests. Adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation. 2007;115(13):1769–1776

    Article  PubMed  Google Scholar 

  18. Saeed M, Wendland M, Yu K, et al Dual effects of gadodiamide injection in depiction of the region of myocardial ischemia. J Magn Reson Imaging. 1993;3(1):21–29

    Article  CAS  PubMed  Google Scholar 

  19. Fieno DS, Shea SM, Li Y, et al Myocardial perfusion imaging based on the blood oxygen level–dependent effect using T2–prepared steady–state free–precession Magnetic Resonance imaging. Circulation. 2004;110:1284–1290

    Article  PubMed  Google Scholar 

  20. Bertschinger KM, Nanz D, Buechi M, et al Magnetic resonance myocardial first–pass perfusion imaging: parameter optimization for signal response and cardiac coverage. J Magn Reson Imaging. 2001;14(5):556–562

    Article  CAS  PubMed  Google Scholar 

  21. Nagel E, Klein C, Paetsch I, et al Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation. 2003;108(4):432–437

    Article  PubMed  Google Scholar 

  22. Ishida N, Sakuma H, Motoyasu M, et al Noninfarcted myocardium: correlation between dynamic first–pass contrast–enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229(1):209–216

    Article  PubMed  Google Scholar 

  23. Plein S, Kozerke S, Suerder D, et al High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection of coronary artery disease. Eur Heart J. 2008 July 18. [Epub ahead of print] PubMed PMID: 18641047; PubMed Central PMCID: PMC2519247

    Google Scholar 

  24. Klem I, Heitner JF, Shah DJ, et al Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol. 2006;47(8):1630–1638

    Article  PubMed  Google Scholar 

  25. Plein S, Schwitter J, Suerder D, et al k–t SENSE–accelerated myocardial perfusion MR imaging at 3.0 Tesla – comparison with 1.5 Tesla. Radiology. 2008;249(2):493–500

    Article  PubMed  Google Scholar 

  26. Wolff SD, Schwitter J, Coulden R, et al Myocardial first–pass perfusion magnetic resonance imaging: a multicenter dose–ranging study. Circulation. 2004;110(6):732–737

    Article  CAS  PubMed  Google Scholar 

  27. Giang TH, Nanz D, Coulden R, et al Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi–centre experience. Eur Heart J. 2004;25(18):1657–1665

    Article  CAS  PubMed  Google Scholar 

  28. Schwitter J, Wacker C, van Rossum A, et al MR–IMPACT: comparison of perfusion–cardiac magnetic resonance with single–photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–489

    Article  PubMed  Google Scholar 

  29. Schwitter J, Saeed M, Wendland MF, et al Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular gadolinium–based magnetic resonance contrast agents. J Am Coll Cardiol. 1997;30(4):1086–1094

    Article  CAS  PubMed  Google Scholar 

  30. Kim RJ, Wu E, Rafael A, et al The use of contrast–enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453

    Article  CAS  PubMed  Google Scholar 

  31. Klein C, Nekolla SG, Bengel FM, et al Assessment of myocardial viability with contrast–enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation. 2002;105(2):162–167

    Article  PubMed  Google Scholar 

  32. Schwitter J. Myocardial perfusion imaging by cardiac magnetic resonance. J Nuc Cardiol. 2006;13(6):841–854

    Article  Google Scholar 

  33. Kellman P, Derbyshire JA, Agyeman KO, McVeigh ER, Arai AE. Extended coverage of first–pass perfusion imaging using slice–interleaved TSENSE. Magn Reson Med. 2004;51:200–204

    Article  CAS  PubMed  Google Scholar 

  34. Schwaiger M. Myocardial perfusion imaging with PET. J Nucl Med. 1994;35(4):693–698

    CAS  PubMed  Google Scholar 

  35. Schwitter J, DeMarco T, Kneifel S, et al Magnetic resonance–based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters: a comparison with positron emission tomography. Circulation. 2000;101(23):2696–2702

    CAS  PubMed  Google Scholar 

  36. Schwitter J. Myocardial perfusion in ischemic heart disease. In: Higgins CB, de Roos, A., ed. MRI and CT of the Cardiovascular Systeme. 2nd ed: Lippincott Williams & Wilkins; 2005

    Google Scholar 

  37. Knuesel PR, Nanz D, Wyss C, et al Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003;108(9):1095–1100

    Article  PubMed  Google Scholar 

  38. Saeed M, Wendland MF, Sakuma H, et al Coronary artery stenosis: detection with contrast–enhanced MR imaging in dogs. Radiology. 1995;196(1):79–84

    CAS  PubMed  Google Scholar 

  39. Wilke N, Simm C, Zhang J, et al Contrast–enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med. 1993;29(4):485–497

    Article  CAS  PubMed  Google Scholar 

  40. Schwitter J, Saeed M, Wendland MF, et al Assessment of myocardial function and perfusion in a canine model of non–occlusive coronary artery stenosis using fast magnetic resonance imaging. J Magn Reson Imaging. 1999;9(1):101–110

    Article  CAS  PubMed  Google Scholar 

  41. Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients wiht coronary artery disease. Circulation. 2000;101:1465–1478

    CAS  PubMed  Google Scholar 

  42. Simor T, Wacker C, Wilke N, et al Detection of coronary artery disease in women by perfusion–CMR: comparison vs SPECT in a large multicenter multivendor trial (MR–IMPACT II). Eur Heart J. 2008; Annual Scientific Meeting, Munich, Germany. Abstract

    Google Scholar 

  43. Cardis E, Vrijheid M, Blettner M, et al Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. Br Med J. 2005;331:77–82

    Article  CAS  Google Scholar 

  44. National Research Council. http://www.nap.edu/catalog/11340.html

  45. Einstein AJ, Henzkova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64–slice computed tomography coronary angiography. JAMA. 2007;298:317–323

    Article  CAS  PubMed  Google Scholar 

  46. Ingkanisorn WP, Kwong RY, Bohme NS, et al Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol. 2006;47(7):1427–1432

    Article  PubMed  Google Scholar 

  47. Panting JR, Gatehouse PD, Yang GZ, et al Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med. 2002;346(25): 1948–1953

    Article  PubMed  Google Scholar 

  48. Schwitter J, Nanz D, Kneifel S, et al Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation. 2001;103(18):2230–2235

    CAS  PubMed  Google Scholar 

  49. Ardenkjaer–Larsen JH, Fridlund B, Gram A, et al Increase in signal–to–noise ratio of > 10,000 times in liquid–state NMR. Proc Nat Acad Sciences USA. 2003;100(18):10158–10163

    Article  CAS  Google Scholar 

  50. Fuster V, Corti R, Fayad ZA, Schwitter J, Badimon JJ. Integration of vascular biology and magnetic resonance imaging in the understanding of atherothrombosis and acute coronary syndromes. J Thromb Haemost. 2003;1(7):1410–1421

    Article  CAS  PubMed  Google Scholar 

  51. Pennell DJ, Underwood SR, Manzara CC, et al Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol. 1992;70(1):34–40

    Article  CAS  PubMed  Google Scholar 

  52. van Rugge FP, van der Wall EE, de Roos A, Bruschke AV. Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol. 1993;22(2):431–439

    Article  PubMed  Google Scholar 

  53. Baer FM, Voth E, Theissen P, Schneider CA, Schicha H, Sechtem U. Coronary artery disease: findings with GRE MR imaging and Tc–99m–methoxyisobutyl–isonitrile SPECT during simultaneous dobutamine stress. Radiology. 1994;193(1):203–209

    CAS  PubMed  Google Scholar 

  54. van Rugge FP, van der Wall EE, Spanjersberg SJ, et al Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. 1994;90(1):12–138

    Google Scholar 

  55. Schalla S, Klein C, Paetsch I, et al Real–time MR image acquisition during high–dose dobutamine hydrochloride stress for detecting left ventricular wall–motion abnormalities in patients with coronary arterial disease. Radiology. 2002;224(3):845–851

    Article  PubMed  Google Scholar 

  56. Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E. Accelerated 4D dobutamine stress MR imaging with k–t BLAST: feasibility and diagnostic performance. Radiology. 2006;241(3): 718–728

    Article  PubMed  Google Scholar 

  57. Pennell DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB. Dipyridamole magnetic resonance imaging: a comparison with thallium–201 emission tomography. Br Heart J. 1990;64(6):362–369

    Article  CAS  PubMed  Google Scholar 

  58. Baer FM, Smolarz K, Jungehulsing M, et al Feasibility of high–dose dipyridamole–magnetic resonance imaging for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol. 1992;69(1):51–56

    Article  CAS  PubMed  Google Scholar 

  59. Zhao S, Croisille P, Janier M, et al Comparison between qualitative and quantitative wall motion analyses using dipyridamole stress breath–hold cine magnetic resonance imaging in patients with severe coronary artery stenosis. Magn Reson Imaging. 1997;15(8): 891–898

    Article  CAS  PubMed  Google Scholar 

  60. Rerkpattanapipat P, Gandhi SK, Darty SN, et al Feasibility to detect severe coronary artery stenoses with upright treadmill exercise magnetic resonance imaging. Am J Cardiol. 2003;92(5):603–606

    Article  PubMed  Google Scholar 

  61. Schwitter J (ed). CMR Update. 1st ed. Zurich; 2008. http://www.herz-mri.ch

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited Limited

About this chapter

Cite this chapter

Nagel, E., Schwitter, J. (2010). CMR and Detection of Coronary Artery Disease. In: Zamorano, J.L., Bax, J.J., Rademakers, F.E., Knuuti, J. (eds) The ESC Textbook of Cardiovascular Imaging. Springer, London. https://doi.org/10.1007/978-1-84882-421-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-421-8_14

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-420-1

  • Online ISBN: 978-1-84882-421-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics