Brain Imaging of Stress and Cardiovascular Responses

  • Marcus Gray
  • Yoko Nagai
  • Hugo D. CritchleyEmail author


Neuroimaging studies in humans can provide valuable insight into the central ­mechanisms through which stress can impact on cardiovascular health. Functional brain imaging has become a major investigative tool within neuroscience that is extensively applied to the characterisation of regional activity patterns associated with cognitive and emotional processing. Neuroimaging approaches have also been applied to examine the control of bodily state, including the generation of adaptive and maladaptive cardiovascular responses.


Brain imaging Stress Cardiovascular responses Neuroimaging techniques Acute stress challenges Arrhythmogenic mechanisms Humoral axes of stress 


  1. 1.
    Lane RD, Wager TD. The new field of Brain-Body Medicine: what have we learned and where are we headed? Neuroimage. 2009;47:1135-1140.PubMedCrossRefGoogle Scholar
  2. 2.
    Lane RD, Waldstein SR, Critchley HD, et al. The rebirth of neuroscience in psychosomatic medicine, part II: clinical applications and implications for research. Psychosom Med. 2009;71:135-151.PubMedCrossRefGoogle Scholar
  3. 3.
    Maguire EA, Spiers HJ, Good CD, Hartley T, Frackowiak RS, Burgess N. Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus. 2003;13:250-259.PubMedCrossRefGoogle Scholar
  4. 4.
    Modinos G, Mechelli A, Ormel J, Groenewold NA, Aleman A, McGuire PK. Schizotypy and brain structure: a voxel-based morphometry study. Psychol Med. 2009;17:1-9.Google Scholar
  5. 5.
    Critchley HD. Psychophysiology of neural, cognitive and affective integration: fMRI and ­autonomic indicants. Int J Psychophysiol. 2009;73:88-94.PubMedCrossRefGoogle Scholar
  6. 6.
    Rauch SL, Jenike MA, Alpert NM, et al. Regional cerebral blood flow measured during ­symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon ­dioxide and positron emission tomography. Arch Gen Psychiatry. 1994;51:62-70.PubMedCrossRefGoogle Scholar
  7. 7.
    Rotge JY, Guehl D, Dilharreguy B, et al. Provocation of obsessive-compulsive symptoms: a quantitative voxel-based meta-analysis of functional neuroimaging studies. J Psychiatry Neurosci. 2008;33:405-412.PubMedGoogle Scholar
  8. 8.
    Pannu Hayes J, Labar KS, Petty CM, McCarthy G, Morey RA. Alterations in the neural ­circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res. 2009;172:7-15.PubMedCrossRefGoogle Scholar
  9. 9.
    Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ. Cerebral correlates of ­autonomic cardiovascular arousal: a functional neuroimaging investigation. J Physiol. 2000;523:259-270.PubMedCrossRefGoogle Scholar
  10. 10.
    Gianaros PJ, Sheu LK, Matthews KA, Jennings JR, Manuck SB, Hariri AR. Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala. J Neurosci. 2008;28:990-999.PubMedCrossRefGoogle Scholar
  11. 11.
    Eisenberger NI, Gable SL, Lieberman MD. Functional magnetic resonance imaging responses relate to differences in real-world social experience. Emotion. 2007;7:745-754.PubMedCrossRefGoogle Scholar
  12. 12.
    Tracey I, Becerra L, Chang I, et al. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neurosci Lett. 2000;288:159-162.PubMedCrossRefGoogle Scholar
  13. 13.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303:1157-1162.PubMedCrossRefGoogle Scholar
  14. 14.
    Kalisch R, Wiech K, Critchley HD, et al. Anxiety reduction through detachment: subjective, physiological, and neural effects. J Cogn Neurosci. 2005;17:874-883.PubMedCrossRefGoogle Scholar
  15. 15.
    Gray M, Kemp AH, Silberstein RB, Nathan PJ. Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage. 2003;20:975-986.PubMedCrossRefGoogle Scholar
  16. 16.
    Dedovic K, Rexroth M, Wolff E, et al. Neural correlates of processing stressful information: an event-related fMRI study. Brain Res. 2009;1293:49-60.PubMedCrossRefGoogle Scholar
  17. 17.
    Wager TD, Waugh CE, Lindquist M, Noll DC, Fredrickson BL, Taylor SF. Brain mediators of cardiovascular responses to social threat: part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. Neuroimage. 2009;47:821-835.PubMedCrossRefGoogle Scholar
  18. 18.
    Wager TD, van Ast VA, Hughes BL, Davidson ML, Lindquist MA, Ochsner KN. Brain ­mediators of cardiovascular responses to social threat, part II: prefrontal-subcortical pathways and relationship with anxiety. Neuroimage. 2009;47:836-851.PubMedCrossRefGoogle Scholar
  19. 19.
    Frankenstein UN, Richter W, McIntyre MC, Rémy F. Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage. 2001;14:827-836.PubMedCrossRefGoogle Scholar
  20. 20.
    Harper RM, Gozal D, Bandler R, Spriggs D, Lee J, Alger J. Regional brain activation in humans during respiratory and blood pressure challenges. Clin Exp Pharmacol Physiol. 1998;25:483-486.PubMedCrossRefGoogle Scholar
  21. 21.
    Evans KC, Banzett RB, Adams L, McKay L, Frackowiak RS, Corfield DR. BOLD fMRI ­identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol. 2002;88:1500-1511.PubMedGoogle Scholar
  22. 22.
    Harrison NA, Brydon L, Walker C, et al. Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry. 2009;66:415-422.PubMedCrossRefGoogle Scholar
  23. 23.
    Gray MA, Minati L, Harrison NA, Gianaros PJ, Napadow V, Critchley HD. Physiological recordings: basic concepts and implementation during functional magnetic resonance ­imaging. Neuroimage. 2009;47:1105-1115.PubMedCrossRefGoogle Scholar
  24. 24.
    King AB, Menon RS, Hachinski V, Cechetto DF. Human forebrain activation by visceral ­stimuli. J Comp Neurol. 1999;413:572-582.PubMedCrossRefGoogle Scholar
  25. 25.
    Harper RM, Bandler R, Spriggs D, Alger JR. Lateralized and widespread brain activation ­during transient blood pressure elevation revealed by magnetic resonance imaging. J Comp Neurol. 2000;417:195-204.PubMedCrossRefGoogle Scholar
  26. 26.
    Topolovec JC, Gati JS, Menon RS, Shoemaker JK, Cechetto DF. Human cardiovascular and gustatory brainstem sites observed by functional magnetic resonance imaging. J Comp Neurol. 2004;471:446-461.PubMedCrossRefGoogle Scholar
  27. 27.
    Corfield DR, Murphy K, Josephs O, et al. Cortical and subcortical control of tongue movement in humans: a functional neuroimaging study using fMRI. J Appl Physiol. 1999;86:1468-1477.PubMedGoogle Scholar
  28. 28.
    McAllen RM, Farrell M, Johnson JM, et al. Human medullary responses to cooling and rewarming the skin: a functional MRI study. Proc Natl Acad Sci USA. 2006;103:809-813.PubMedCrossRefGoogle Scholar
  29. 29.
    Gray MA, Rylander K, Harrison NA, Wallin BG, Critchley HD. Following one’s heart: cardiac rhythms gate central initiation of sympathetic reflexes. J Neurosci. 2009;29:1817-1825.PubMedCrossRefGoogle Scholar
  30. 30.
    Macefield VG, Henderson LA. Real-time imaging of the medullary circuitry involved in the generation of spontaneous muscle sympathetic nerve activity in awake subjects. Hum Brain Mapp. 2010;31:539-549.PubMedGoogle Scholar
  31. 31.
    Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727-1732.PubMedCrossRefGoogle Scholar
  32. 32.
    Critchley HD, Mathias CJ, Dolan RJ. Neural correlates of first and second-order representation of bodily states. Nat Neurosci. 2001;4:207-212.PubMedCrossRefGoogle Scholar
  33. 33.
    Critchley HD, Josephs O, O’Doherty J, et al. Human cingulate cortex and autonomic cardiovascular control: converging neuroimaging and clinical evidence. Brain. 2003;216:2139-2156.CrossRefGoogle Scholar
  34. 34.
    Lane RD, Reiman EM, Ahern GL, Thayer JF. Activity in the medial prefrontal cortex correlates with vagal component of heart rate variability. Brain Cogn. 2001;47:97-100.Google Scholar
  35. 35.
    Matthews SC, Paulus MP, Simmons AN, Nelesen RA, Dimsdale JE. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage. 2004;22:1151-1156.PubMedCrossRefGoogle Scholar
  36. 36.
    Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493:154-166.PubMedCrossRefGoogle Scholar
  37. 37.
    Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44:213-222.PubMedCrossRefGoogle Scholar
  38. 38.
    Gianaros PJ, Van Der Veen FM, Jennings JR. Regional cerebral blood flow correlates with heart period and high-frequency heart period variability during working-memory tasks: implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology. 2004;41:521-530.PubMedCrossRefGoogle Scholar
  39. 39.
    Gianaros PJ, Derbyshire SW, May JC, Siegle GJ, Gamalo MA, Jennings JR. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology. 2005;42:627-635.PubMedCrossRefGoogle Scholar
  40. 40.
    Critchley HD, Rotshtein P, Nagai Y, O’Doherty J, Mathias CJ, Dolan RJ. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage. 2005;24:751-762.PubMedCrossRefGoogle Scholar
  41. 41.
    Williams LM, Phillips ML, Brammer MJ, et al. Arousal dissociates amygdala and hippocampal fear responses: evidence from simultaneous fMRI and skin conductance recording. Neuroimage. 2001;14:1070-1079.PubMedCrossRefGoogle Scholar
  42. 42.
    Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci. 2001;4:437-441.PubMedCrossRefGoogle Scholar
  43. 43.
    Dalton KM, Kalin NH, Grist TM, Davidson RJ. Neural-cardiac coupling in threat-evoked anxiety. J Cogn Neurosci. 2005;17:969-980.PubMedCrossRefGoogle Scholar
  44. 44.
    Henderson LA, Richard CA, Macey PM, et al. Functional magnetic resonance signal changes in neural structures to baroreceptor reflex activation. J Appl Physiol. 2004;96:693-703.PubMedCrossRefGoogle Scholar
  45. 45.
    Kimmerly DS, O’Leary DD, Menon RS, Gati JS, Shoemaker JK. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol. 2005;569:331-345.PubMedCrossRefGoogle Scholar
  46. 46.
    Donadio V, Kallio M, Karlsson T, Nordin M, Wallin BG. Inhibition of human muscle ­sympathetic activity by sensory stimulation. J Physiol. 2002;544:285-292.PubMedCrossRefGoogle Scholar
  47. 47.
    Dworkin BR, Elbert T, Rau H, et al. Central effects of baroreceptor activation in humans: attenuation of skeletal reflexes and pain perception. Proc Natl Acad Sci USA. 1994;91:6329-6333.PubMedCrossRefGoogle Scholar
  48. 48.
    Rau H, Elbert T. Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biol Psychol. 2001;57:179-201.PubMedCrossRefGoogle Scholar
  49. 49.
    Treiber FA, Kamarck T, Schneiderman N, Sheffield D, Kapuku G, Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom Med. 2003;65:46-62.PubMedGoogle Scholar
  50. 50.
    Jennings JR, Kamarck TW, Everson-Rose SA, Kaplan GA, Manuck S, Salonen JT. Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. Circulation. 2004;110:2198-2203.PubMedCrossRefGoogle Scholar
  51. 51.
    Matthews KA, Zhu S, Tucker DC, Whooley MA. Blood pressure reactivity to psychological stress and coronary calcification in the coronary artery risk development in young adults study. Hypertension. 2006;47:391-395.PubMedCrossRefGoogle Scholar
  52. 52.
    Lown B. Sudden cardiac death: biobehavioral perspective. Circulation. 1987;76:186-196.Google Scholar
  53. 53.
    Strike PC, Steptoe A. Psychosocial factors in the development of coronary artery disease. Prog Cardiovasc Dis. 2004;4:337-347.CrossRefGoogle Scholar
  54. 54.
    Carroll D, Smith GD, Shipley MJ, Steptoe A, Brunner EJ, Marmot MG. Blood pressure ­reactions to acute psychological stress and future blood pressure status: a 10-year follow-up of men in the Whitehall II study. Psychosom Med. 2001;63:737-743.PubMedGoogle Scholar
  55. 55.
    O’Connor MF, Gündel H, McRae K, Lane RD. Baseline vagal tone predicts BOLD response during elicitation of grief. Neuropsychopharmacology. 2007;32:2184-2189.PubMedCrossRefGoogle Scholar
  56. 56.
    Gianaros PJ, Jennings JR, Sheu LK, Greer PJ, Kuller LH, Matthews KA. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage. 2007;35:795-803.PubMedCrossRefGoogle Scholar
  57. 57.
    Gianaros PJ, Horenstein JA, Cohen S, et al. Perigenual anterior cingulate morphology covaries with perceived social standing. Soc Cogn Affect Neursci. 2007;2:161-173.CrossRefGoogle Scholar
  58. 58.
    Gianaros PJ, Jennings JR, Sheu LK, Derbyshire SW, Matthews KA. Heightened functional neural activation to psychological stress covaries with exaggerated blood pressure reactivity. Hypertension. 2007;49:134-140.PubMedCrossRefGoogle Scholar
  59. 59.
    Steptoe A, Feldman PJ, Kunz S, Owen N, Willemsen G, Marmot M. Stress responsivity and socioeconomic status: a mechanism for increased cardiovascular disease risk? Eur Heart J. 2002;23:1757-1763.PubMedCrossRefGoogle Scholar
  60. 60.
    Fries R, Konig J, Schafers HJ, Bohm M. Triggering effect of physical and mental stress on spontaneous ventricular tachyarrhythmias in patients with implantable cardioverter-defibrillators. Clin Cardiol. 2002;25:474-478.PubMedCrossRefGoogle Scholar
  61. 61.
    Rosen SD, Paulesu E, Nihoyannopoulos P, et al. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med. 1996;124:939-949.PubMedCrossRefGoogle Scholar
  62. 62.
    Soufer R, Bremner JD, Arrighi JA, et al. Cerebral cortical hyperactivation in response to mental stress in patients with coronary artery disease. Proc Natl Acad Sci USA. 1998;95:6454-6459.PubMedCrossRefGoogle Scholar
  63. 63.
    Rosen SD, Paulesu E, Wise RJ, Camici PG. Central neural contribution to the perception of chest pain in cardiac syndrome X. Heart. 2002;87:513-519.PubMedCrossRefGoogle Scholar
  64. 64.
    Oppenheimer SM, Cechetto DF, Hachinski VC. Cerebrogenic cardiac arrhythmias. Cerebral electrocardiographic influences and their role in sudden death. Arch Neurol. 1990;47:513-519.PubMedCrossRefGoogle Scholar
  65. 65.
    Oppenheimer SM. Neurogenic cardiac effects of cerebrovascular disease. Curr Opin Neurol. 1994;7:20-24.PubMedCrossRefGoogle Scholar
  66. 66.
    Nei M, Ho RT, Abou-Khalil BW, et al. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia. 2004;45:338-345.PubMedCrossRefGoogle Scholar
  67. 67.
    Lampert R, Jain D, Burg MM, Batsford WP, McPherson CA. Destabilising effect of mental stress on ventricular arrhythmias in patients with implantable cardioverter-defibrillators. Circulation. 2000;101:158-164.PubMedCrossRefGoogle Scholar
  68. 68.
    Lane RD, Jennings JR. Hemispheric asymmetry autonomic asymmetry and the problem of sudden cardiac death. In: Davidson RJ, Hugdahl K, eds. Brain Asymmetry. Cambridge: The MIT Press; 1995:271-304.Google Scholar
  69. 69.
    Taggart P, Sutton P, Redfern C, et al. The effect of mental stress on the non-dipolar components of the T wave: modulation by hypnosis. Psychosom Med. 2005;67:376-383.PubMedCrossRefGoogle Scholar
  70. 70.
    Critchley HD, Taggart P, Sutton PM, et al. Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain. 2005;128:75-85.PubMedCrossRefGoogle Scholar
  71. 71.
    Gray MA, Taggart P, Sutton PM, et al. A cortical potential reflecting cardiac function. Proc Natl Acad Sci USA. 2007;104:6818-6823.PubMedCrossRefGoogle Scholar
  72. 72.
    Dedovic K, Renwick R, Mahani NK, Engert V, Lupien SJ, Pruessner JC. The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. J Psychiatry Neurosci. 2005;30:319-325.PubMedGoogle Scholar
  73. 73.
    Pruessner M, Pruessner JC, Hellhammer DH, Bruce Pike G, Lupien SJ. The associations among hippocampal volume, cortisol reactivity, and memory performance in healthy young men. Psychiatry Res. 2007;155:1-10.PubMedCrossRefGoogle Scholar
  74. 74.
    Taylor SE, Burklund LJ, Eisenberger NI, Lehman BJ, Hilmert CJ, Lieberman MD. Neural bases of moderation of cortisol stress responses by psychosocial resources. J Pers Soc Psychol. 2008;95:197-211.PubMedCrossRefGoogle Scholar
  75. 75.
    Wang J, Rao H, Wetmore GS, et al. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc Natl Acad Sci USA. 2005;102:17804-17809.PubMedCrossRefGoogle Scholar
  76. 76.
    Urry HL, van Reekum CM, Johnstone T, et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci. 2006;26:4415-4425.PubMedCrossRefGoogle Scholar
  77. 77.
    Pruessner JC, Dedovic K, Khalili-Mahani N, et al. Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol Psychiatry. 2008;63:234-240.PubMedCrossRefGoogle Scholar
  78. 78.
    Kern S, Oakes TR, Stone CK, McAuliff EM, Kirschbaum C, Davidson RJ. Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology. 2008;33:517-529.PubMedCrossRefGoogle Scholar
  79. 79.
    King AP, Liberzon I. Assessing the neuroendocrine stress response in the functional neuroimaging context. Neuroimage. 2009;47:1116-1124.PubMedCrossRefGoogle Scholar
  80. 80.
    Lovallo WR, Robinson JL, Glahn DC, Fox PT. Acute effects of hydrocortisone on the human brain: an fMRI study. Psychoneuroendocrinology. 2010;351:15-20.CrossRefGoogle Scholar
  81. 81.
    Pruessner JC, Baldwin MW, Dedovic K, et al. Self-esteem, locus of control, hippocampal volume, and cortisol regulation in young and old adulthood. Neuroimage. 2005;28:815-826.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhou Z, Zhu G, Hariri AR, et al. Genetic variation in human NPY expression affects stress response and emotion. Nature. 2008;452:997-1001.PubMedCrossRefGoogle Scholar
  83. 83.
    Soreca I, Rosano C, Jennings JR, et al. Gain in adiposity across 15 years is associated with reduced gray matter volume in healthy women. Psychosom Med. 2009;71:485-490.PubMedCrossRefGoogle Scholar
  84. 84.
    Ganzel BL, Kim P, Glover GH, Temple E. Temperamental after 9/11: multimodal neuroimaging evidence for stress-related change in the healthy adult brain. Neuroimage. 2008;40:788-795.PubMedCrossRefGoogle Scholar
  85. 85.
    deCharms RC. Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn Sci. 2007;11:473-481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Faculty of Medicine Nursing and Health SciencesMonash UniversityClaytonAustralia
  2. 2.Department of Psychiatry, Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK

Personalised recommendations