Hypothalamic–Pituitary–Adrenal Axis and Cardiovascular Disease

  • Gregory Kaltsas
  • Anthony S. Zannas
  • George P. ChrousosEmail author


Complex biological systems constantly maintain a dynamic equilibrium (homeostasis) that is necessary for survival. This equilibrium is achieved through interactions with the environment, and adaptation to the ever-changing internal and external milieu. Throughout evolution, the stress system has remained a relatively well-­preserved biological machinery that has served this function efficiently; designed to respond to internal or external challenges (stressors), and to reestablish homeostasis by various physiological and behavioral adaptive responses to stress which have been necessary for the survival of our ancestors in adverse environments.


Hypothalamic–Pituitary–Adrenal axis Cardiovascular disease Stress system Stress response Glucocorticoid circulation Glucocorticoid metabolism Glucocorticoid receptor (GR) Effects on the immune system Stress and cardiovascular risk factors 


  1. 1.
    Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of ­physical and behavioral homeostasis. JAMA. 1992;267:1244-1252.PubMedCrossRefGoogle Scholar
  2. 2.
    Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32-36.CrossRefGoogle Scholar
  3. 3.
    Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-­pituitaryadrenocortical axis. Trends Neurosci. 1997;20(2):78-84.PubMedCrossRefGoogle Scholar
  4. 4.
    Kvetnasky R, Pacak K, Sabban EL, et al. Stressor specificity of peripheral catecholaminergic activation. Adv Pharmacol. 1998;42:556-560.CrossRefGoogle Scholar
  5. 5.
    Bhatnagar S, Dallman M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience. 1998;84(4):1025-1039.PubMedCrossRefGoogle Scholar
  6. 6.
    Dallman MF, Bhatnagar S, Viau V. Hypothalamic-pituitary-adrenal axis. In: Fink G, ed. Encyclopedia of Stress. 1st ed. London: Academic; 2007:421-427.CrossRefGoogle Scholar
  7. 7.
    Chrousos GP. Regulation and dysregulation of the hypothalamic-pituitary-adrenal axis. The ­corticotrophin releasing hormone perspective. Endocrinol Metab Clin North Am. 1992;21:833-858.PubMedGoogle Scholar
  8. 8.
    Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the ­discovery of 41-residue corticotrophin-releasing factor. Endocr Rev. 1986;7(4):351-378.PubMedCrossRefGoogle Scholar
  9. 9.
    Lamberts SWJ, Verleun T, Oosterom R, et al. Corticotropin releasing factor and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocrinol Metab. 1984;58:298-303.PubMedCrossRefGoogle Scholar
  10. 10.
    Engler O, Pham T, Fullenon MJ, et al. Studies of the secretion of corticotropin releasing factor and arginine-vasopressin into hypophyseal portal circulation of the conscious sheep. Neuroen­docrinology. 1989;49:367-381.PubMedCrossRefGoogle Scholar
  11. 11.
    Palkovits M, Young WS, Kovacs K, Toth ZS, Makara GB. Alterations in corticotropin-­releasing hormone gene expression of central amygdaloid neurons following long-term paraventricular lesions and adrenalectomy. Neuroscience. 1998;85(1):135-147.PubMedCrossRefGoogle Scholar
  12. 12.
    Wong ML, Licinio J, Pasternak KI, Gold PW. Localization of corticotropin-releasing hormone (CRH) receptor mRNA in adult rat brain by in sity hybridization histochemistry. Endocrinology. 1994;135:2275-2278.PubMedCrossRefGoogle Scholar
  13. 13.
    Potter E, Sutton S, Donaldson C, et al. Distribution of corticotrophin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA. 1994;91(19):8777-8781.PubMedCrossRefGoogle Scholar
  14. 14.
    Gray TS. Amygdala: role in autonomic and neuroendocrine responses to stress. In: McCubbin A, Kaufmann PG, Nemeroff CB, eds. Stress, Neuropeptides and Systemic Disease. New York: Academic; 1989:37-53.Google Scholar
  15. 15.
    Roth RH, Tam SY, Ida Y, Yang J, Deutsch AY. Stress and the mesocorticolimbic dopamine systems. Ann N Y Acad Sci. 1988;537:138-147.PubMedCrossRefGoogle Scholar
  16. 16.
    Mcewen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873-904.PubMedCrossRefGoogle Scholar
  17. 17.
    Dunn AJ, Berridge CW. Physiological and behavioural responses to corticotropin-releasing factor: is CRF a mediator of anxiety or stress responses? Brain Res Rev. 1990;15:71-100.PubMedCrossRefGoogle Scholar
  18. 18.
    Shibasaki T, Imaki T, Hotta M, et al. Psychological stress increases arousal through brain corticotrophin-releasing hormone without significant increase in adrenocorticotropin and ­catecholamine secretion. Brain Res. 1993;618:71-75.PubMedCrossRefGoogle Scholar
  19. 19.
    Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA. 2000;97:6079-6084.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith GW, Aubry JM, Dellu F, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine ­development. Neuron. 1998;20:1093-1102.PubMedCrossRefGoogle Scholar
  21. 21.
    Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209-214.PubMedCrossRefGoogle Scholar
  22. 22.
    Bailey JL, Wang X, Price SR. The balance between glucocorticoids and insulin regulates muscle proteolysis via ubiquitin-proteasome pathway. Miner Electrol Metab. 1999;25:220-223.CrossRefGoogle Scholar
  23. 23.
    Breuner CW, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol. 2002;175(1):99-112.PubMedCrossRefGoogle Scholar
  24. 24.
    Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711-1723.PubMedCrossRefGoogle Scholar
  25. 25.
    Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid ­receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17(3):245-261.PubMedGoogle Scholar
  26. 26.
    Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci. 2004;1024:102-123.PubMedCrossRefGoogle Scholar
  27. 27.
    Pujols L, Mullol J, Perez M, et al. Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am J Resp Cell Mol. 2001;24(1):49-57.CrossRefGoogle Scholar
  28. 28.
    Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci. 1998;851:311-335.PubMedCrossRefGoogle Scholar
  29. 29.
    Chamandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259-284.CrossRefGoogle Scholar
  30. 30.
    Magnuson MA, Quinn PG, Granner DK. Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyltransferase fusion genes. Insulin’s effects oppose those of cAMP and dexamethasone. J Biol Chem. 1987;262(31):14917-14920.PubMedGoogle Scholar
  31. 31.
    Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865-871.PubMedCrossRefGoogle Scholar
  32. 32.
    Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet. 1997;349(9060):1210-1213.PubMedCrossRefGoogle Scholar
  33. 33.
    Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res. 2004;64:217-226.PubMedCrossRefGoogle Scholar
  34. 34.
    Stewart PM, Krozowski ZS. 11 beta-Hydroxysteroid dehydrogenase. Vitam Horm. 1999;57:249-324.PubMedCrossRefGoogle Scholar
  35. 35.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415-1428.PubMedCrossRefGoogle Scholar
  36. 36.
    Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardio­vascular disease mortality in middle aged men. JAMA. 2002;288:2709-2716.PubMedCrossRefGoogle Scholar
  37. 37.
    Trayhum P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an ­endocrine and secretory organ. Proc Nutr Soc. 2001;60:329-339.CrossRefGoogle Scholar
  38. 38.
    Hauner H, Schmid P, Pfeifer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987;64:832-835.PubMedCrossRefGoogle Scholar
  39. 39.
    Ramsay TG. Fat cells. Endocrinol Metab Clin N Am. 1996;25:847-870.CrossRefGoogle Scholar
  40. 40.
    Abrams J. Role of endothelial dysfunction in coronary artery disease. Am J Cardiol. 1997;79:2-9.PubMedCrossRefGoogle Scholar
  41. 41.
    Mangos GJ, Walker BR, Kelly JJ, et al. Cortisol inhibits cholinergic vasodilation in the human forearm. Am J Hypertens. 2000;13:1155-1160.PubMedCrossRefGoogle Scholar
  42. 42.
    Ullian ME. The role of corticosteroids in the regulation of vascular tone. Cardiovasc Res. 1999;41:55-64.PubMedCrossRefGoogle Scholar
  43. 43.
    Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340:115-126.PubMedCrossRefGoogle Scholar
  44. 44.
    Venihaki M, Dikkes P, Carrigan A, Karalis KP. Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J Clin Invest. 2001;108:1159-1166.PubMedGoogle Scholar
  45. Nikolarakis KE, Almeida OFX, Herz A. Stimulation of hypothalamic β-endorphin and ­dynorphin release by corticotrophin-releasing factor. Brain Res. 1986;399:152-155.Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Gregory Kaltsas
    • 1
  • Anthony S. Zannas
    • 2
  • George P. Chrousos
    • 3
    Email author
  1. 1.Department of Pathophysiology, Laiko HospitalNational University of AthensAthensGreece
  2. 2.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  3. 3.First Department of PediatricsAghia Sophia Children’s HospitalAthensGreece

Personalised recommendations