Skip to main content

Hypothalamic–Pituitary–Adrenal Axis and Cardiovascular Disease

  • Chapter
  • First Online:
  • 2203 Accesses

Abstract

Complex biological systems constantly maintain a dynamic equilibrium (homeostasis) that is necessary for survival. This equilibrium is achieved through interactions with the environment, and adaptation to the ever-changing internal and external milieu. Throughout evolution, the stress system has remained a relatively well-­preserved biological machinery that has served this function efficiently; designed to respond to internal or external challenges (stressors), and to reestablish homeostasis by various physiological and behavioral adaptive responses to stress which have been necessary for the survival of our ancestors in adverse environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chrousos GP, Gold PW. The concepts of stress and stress system disorders: overview of ­physical and behavioral homeostasis. JAMA. 1992;267:1244-1252.

    Article  PubMed  CAS  Google Scholar 

  2. Selye H. A syndrome produced by diverse nocuous agents. Nature. 1936;138:32-36.

    Article  Google Scholar 

  3. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-­pituitaryadrenocortical axis. Trends Neurosci. 1997;20(2):78-84.

    Article  PubMed  CAS  Google Scholar 

  4. Kvetnasky R, Pacak K, Sabban EL, et al. Stressor specificity of peripheral catecholaminergic activation. Adv Pharmacol. 1998;42:556-560.

    Article  Google Scholar 

  5. Bhatnagar S, Dallman M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience. 1998;84(4):1025-1039.

    Article  PubMed  CAS  Google Scholar 

  6. Dallman MF, Bhatnagar S, Viau V. Hypothalamic-pituitary-adrenal axis. In: Fink G, ed. Encyclopedia of Stress. 1st ed. London: Academic; 2007:421-427.

    Chapter  Google Scholar 

  7. Chrousos GP. Regulation and dysregulation of the hypothalamic-pituitary-adrenal axis. The ­corticotrophin releasing hormone perspective. Endocrinol Metab Clin North Am. 1992;21:833-858.

    PubMed  CAS  Google Scholar 

  8. Antoni FA. Hypothalamic control of adrenocorticotropin secretion: advances since the ­discovery of 41-residue corticotrophin-releasing factor. Endocr Rev. 1986;7(4):351-378.

    Article  PubMed  CAS  Google Scholar 

  9. Lamberts SWJ, Verleun T, Oosterom R, et al. Corticotropin releasing factor and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocrinol Metab. 1984;58:298-303.

    Article  PubMed  CAS  Google Scholar 

  10. Engler O, Pham T, Fullenon MJ, et al. Studies of the secretion of corticotropin releasing factor and arginine-vasopressin into hypophyseal portal circulation of the conscious sheep. Neuroen­docrinology. 1989;49:367-381.

    Article  PubMed  CAS  Google Scholar 

  11. Palkovits M, Young WS, Kovacs K, Toth ZS, Makara GB. Alterations in corticotropin-­releasing hormone gene expression of central amygdaloid neurons following long-term paraventricular lesions and adrenalectomy. Neuroscience. 1998;85(1):135-147.

    Article  PubMed  CAS  Google Scholar 

  12. Wong ML, Licinio J, Pasternak KI, Gold PW. Localization of corticotropin-releasing hormone (CRH) receptor mRNA in adult rat brain by in sity hybridization histochemistry. Endocrinology. 1994;135:2275-2278.

    Article  PubMed  CAS  Google Scholar 

  13. Potter E, Sutton S, Donaldson C, et al. Distribution of corticotrophin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA. 1994;91(19):8777-8781.

    Article  PubMed  CAS  Google Scholar 

  14. Gray TS. Amygdala: role in autonomic and neuroendocrine responses to stress. In: McCubbin A, Kaufmann PG, Nemeroff CB, eds. Stress, Neuropeptides and Systemic Disease. New York: Academic; 1989:37-53.

    Google Scholar 

  15. Roth RH, Tam SY, Ida Y, Yang J, Deutsch AY. Stress and the mesocorticolimbic dopamine systems. Ann N Y Acad Sci. 1988;537:138-147.

    Article  PubMed  CAS  Google Scholar 

  16. Mcewen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87:873-904.

    Article  PubMed  Google Scholar 

  17. Dunn AJ, Berridge CW. Physiological and behavioural responses to corticotropin-releasing factor: is CRF a mediator of anxiety or stress responses? Brain Res Rev. 1990;15:71-100.

    Article  PubMed  CAS  Google Scholar 

  18. Shibasaki T, Imaki T, Hotta M, et al. Psychological stress increases arousal through brain corticotrophin-releasing hormone without significant increase in adrenocorticotropin and ­catecholamine secretion. Brain Res. 1993;618:71-75.

    Article  PubMed  CAS  Google Scholar 

  19. Habib KE, Weld KP, Rice KC, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Acad Sci USA. 2000;97:6079-6084.

    Article  PubMed  CAS  Google Scholar 

  20. Smith GW, Aubry JM, Dellu F, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine ­development. Neuron. 1998;20:1093-1102.

    Article  PubMed  CAS  Google Scholar 

  21. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209-214.

    Article  PubMed  CAS  Google Scholar 

  22. Bailey JL, Wang X, Price SR. The balance between glucocorticoids and insulin regulates muscle proteolysis via ubiquitin-proteasome pathway. Miner Electrol Metab. 1999;25:220-223.

    Article  CAS  Google Scholar 

  23. Breuner CW, Orchinik M. Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol. 2002;175(1):99-112.

    Article  PubMed  CAS  Google Scholar 

  24. Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids – new mechanisms for old drugs. N Engl J Med. 2005;353(16):1711-1723.

    Article  PubMed  CAS  Google Scholar 

  25. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid ­receptor function and tissue sensitivity to glucocorticoids. Endocr Rev. 1996;17(3):245-261.

    PubMed  CAS  Google Scholar 

  26. Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann N Y Acad Sci. 2004;1024:102-123.

    Article  PubMed  CAS  Google Scholar 

  27. Pujols L, Mullol J, Perez M, et al. Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am J Resp Cell Mol. 2001;24(1):49-57.

    Article  CAS  Google Scholar 

  28. Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann N Y Acad Sci. 1998;851:311-335.

    Article  PubMed  CAS  Google Scholar 

  29. Chamandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259-284.

    Article  Google Scholar 

  30. Magnuson MA, Quinn PG, Granner DK. Multihormonal regulation of phosphoenolpyruvate carboxykinase-chloramphenicol acetyltransferase fusion genes. Insulin’s effects oppose those of cAMP and dexamethasone. J Biol Chem. 1987;262(31):14917-14920.

    PubMed  CAS  Google Scholar 

  31. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53(4):865-871.

    Article  PubMed  Google Scholar 

  32. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet. 1997;349(9060):1210-1213.

    Article  PubMed  CAS  Google Scholar 

  33. Girod JP, Brotman DJ. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc Res. 2004;64:217-226.

    Article  PubMed  CAS  Google Scholar 

  34. Stewart PM, Krozowski ZS. 11 beta-Hydroxysteroid dehydrogenase. Vitam Horm. 1999;57:249-324.

    Article  PubMed  CAS  Google Scholar 

  35. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415-1428.

    Article  PubMed  CAS  Google Scholar 

  36. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardio­vascular disease mortality in middle aged men. JAMA. 2002;288:2709-2716.

    Article  PubMed  Google Scholar 

  37. Trayhum P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an ­endocrine and secretory organ. Proc Nutr Soc. 2001;60:329-339.

    Article  Google Scholar 

  38. Hauner H, Schmid P, Pfeifer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab. 1987;64:832-835.

    Article  PubMed  CAS  Google Scholar 

  39. Ramsay TG. Fat cells. Endocrinol Metab Clin N Am. 1996;25:847-870.

    Article  CAS  Google Scholar 

  40. Abrams J. Role of endothelial dysfunction in coronary artery disease. Am J Cardiol. 1997;79:2-9.

    Article  PubMed  CAS  Google Scholar 

  41. Mangos GJ, Walker BR, Kelly JJ, et al. Cortisol inhibits cholinergic vasodilation in the human forearm. Am J Hypertens. 2000;13:1155-1160.

    Article  PubMed  CAS  Google Scholar 

  42. Ullian ME. The role of corticosteroids in the regulation of vascular tone. Cardiovasc Res. 1999;41:55-64.

    Article  PubMed  CAS  Google Scholar 

  43. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340:115-126.

    Article  PubMed  CAS  Google Scholar 

  44. Venihaki M, Dikkes P, Carrigan A, Karalis KP. Corticotropin-releasing hormone regulates IL-6 expression during inflammation. J Clin Invest. 2001;108:1159-1166.

    PubMed  CAS  Google Scholar 

  45. Nikolarakis KE, Almeida OFX, Herz A. Stimulation of hypothalamic β-endorphin and ­dynorphin release by corticotrophin-releasing factor. Brain Res. 1986;399:152-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Chrousos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kaltsas, G., Zannas, A.S., Chrousos, G.P. (2011). Hypothalamic–Pituitary–Adrenal Axis and Cardiovascular Disease. In: Hjemdahl, P., Steptoe, A., Rosengren, A. (eds) Stress and Cardiovascular Disease. Springer, London. https://doi.org/10.1007/978-1-84882-419-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-419-5_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-418-8

  • Online ISBN: 978-1-84882-419-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics