Cardiovascular and Autonomic Responses to Stress

  • Paul HjemdahlEmail author
  • Murray Esler


The cardiovascular system typically adapts to acute mental stress by a response ­pattern called the “defense reaction” which serves to prepare the organism for fight or flight.1,2 The changes associated with the defense reaction provide short term survival benefit, but they may also provoke acute cardiovascular complications, as discussed in Chap. 9 on the triggering of plaque rupture, and Chap. 10 on stress cardiomyopathy.


Cardiovascular response Autonomic responses Cardiovascular ­homeostasis Autonomic nervous system Sympatho-adrenal system Catecholamine measurements Acute mental stress Chronic mental stress Peripheral vascular responses Limb blood flow Renal blood flow Pathophysiological considerations 


  1. 1.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347-504.PubMedGoogle Scholar
  2. 2.
    Herd JA. Cardiovascular responses to stress. Physiol Rev. 1991;71:305-330.PubMedGoogle Scholar
  3. 3.
    Henry JP, Stephens PM, Ely DL. Psychosocial hypertension and the defence and defeat ­reactions. J Hypertens. 1986;4:687-697.PubMedCrossRefGoogle Scholar
  4. 4.
    Steptoe A, Vögele C. Methodology of mental stress testing in cardiovascular research. Circulation. 1991;83:II-14-II-24.Google Scholar
  5. 5.
    Hjemdahl P. Plasma catecholamines – analytical challenges and physiological limitations. Baillère’s Clin Endocrinol Metab. 1993;7:307-353.CrossRefGoogle Scholar
  6. 6.
    Rowell LB. Reflex control of regional circulations in humans. J Auton Nerv Syst. 1984;11:101-114.PubMedCrossRefGoogle Scholar
  7. 7.
    Shepherd JT, Mancia G. Reflex control of the human cardiovascular system. Rev Physiol Biochem Pharmacol. 1986;105:3-99.Google Scholar
  8. 8.
    Malpas SC. Sympathetic nervous system overactivity and its role in the development of ­cardiovascular disease. Physiol Rev. 2010;90:513-557.PubMedCrossRefGoogle Scholar
  9. 9.
    Rozanski A, Blumenthal JA. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99:2192-2217.PubMedCrossRefGoogle Scholar
  10. 10.
    Julius S. The blood pressure seeking properties of the central nervous system. J Hypertens. 1988;6:177-185.PubMedCrossRefGoogle Scholar
  11. 11.
    DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol. 2010;298:R245-R253.Google Scholar
  12. 12.
    Lundberg JM. Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev. 1996;48:113-178.PubMedGoogle Scholar
  13. 13.
    Pernow J, Kahan T, Hjemdahl P, Lundberg JM. Possible involvement of neuropeptide Y in sympathetic vascular control of canine skeletal muscle. Acta Physiol Scand. 1988;132:43-50.PubMedCrossRefGoogle Scholar
  14. 14.
    Pernow J, Schwieler J, Kahan T, et al. Influence of sympathetic discharge pattern on norepinephrine and neuropeptide Y release. Am J Physiol. 1989;257:H866-H872.PubMedGoogle Scholar
  15. 15.
    Morris MJ, Cox HS, Lambert GW, et al. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans. Hypertension. 1997;29:137.PubMedCrossRefGoogle Scholar
  16. 16.
    Tidgren B, Theodorsson E, Hjemdahl P. Renal and systemic plasma immunoreactive ­neuropeptide Y and calcitonin gene-related peptide responses to mental stress and adrenaline in humans. Clin Physiol. 1991;11:9-19.PubMedCrossRefGoogle Scholar
  17. 17.
    Tidgren B, Hjemdahl P, Theodorsson E, Nussberger J. Renal responses to dynamic exercise in man. J Appl Physiol. 1991;70:2279-2286.PubMedGoogle Scholar
  18. 18.
    Hjemdahl P. Physiology of the autonomic nervous system as related to cardiovascular ­function: implications for stress research. In: Byrne DG, Rosenman RH, eds. Anxiety and the Heart. New York: Hemisphere Publ Corp; 1991:95-158.Google Scholar
  19. 19.
    Esler M, Jennings G, Lambert G, et al. Overflow of catecholamine neurotransmitters to the circulation: source, fate and functions. Physiol Rev. 1990;70:963-985.PubMedGoogle Scholar
  20. 20.
    Wallin BG, Fagius J. Peripheral sympathetic neural activity in conscious humans. Annu Rev Physiol. 1988;50:565-576.PubMedCrossRefGoogle Scholar
  21. 21.
    Joyner MJ, Charkoudian N, Walin BG. Sympathetic nervous system and blood pressure in humans – individualized patterns of regulation and their implications. Hypertension. 2010;56:10-16.PubMedCrossRefGoogle Scholar
  22. 22.
    Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability; standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354-381.CrossRefGoogle Scholar
  23. 23.
    Lahiri MK, Kannankeril PJ, Goldberger JJ. Assessment of autonomic function in cardiovascular disease. J Am Coll Cardiol. 2008;51:1725-1733.PubMedCrossRefGoogle Scholar
  24. 24.
    Kingwell BA, Thompson JM, Kaye DM, et al. Heart rate spectral analysis, cardiac norepinephrine spillover and muscle sympathetic nerve activity during human sympathetic nervous ­activation and failure. Circulation. 1994;90:234-240.PubMedCrossRefGoogle Scholar
  25. 25.
    Hjemdahl P, Åkerstedt T, Pollare T, Gillberg M. Influence of beta-adrenoceptor blockade by metoprolol and propranolol on plasma concentrations and effects of noradrenaline and adrenaline during i.v. infusion. Acta Physiol Scand. 1983;515(Suppl):45-53.Google Scholar
  26. 26.
    Åkerstedt T, Gillberg M, Hjemdahl P, et al. Comparison of urinary and plasma catecholamine responses to mental stress. Acta Physiol Scand. 1983;117:19-26.PubMedCrossRefGoogle Scholar
  27. 27.
    Kopp U, Bradley T, Hjemdahl P. Renal venous outflow and urinary excretion of norepinephrine, epinephrine and dopamine during graded renal nerve stimulation. Am J Physiol. 1983;244:E52-E60.PubMedGoogle Scholar
  28. 28.
    Hedman A, Hjemdahl P, Nordlander R, Åström H. Effects of mental and physical stress on central haemodynamics and cardiac sympathetic nerve activity during QT interval-sensing rate-responsive and fixed rate ventricular inhibited pacing. Eur Heart J. 1990;11:903-915.PubMedGoogle Scholar
  29. 29.
    Anderson EA, Wallin BG, Mark AL. Dissociation of sympathetic nerve activity in arm and leg muscle during mental stress. Hypertension. 1987;9(suppl 3):114-119.Google Scholar
  30. 30.
    Folkow B, Di Bona GF, Hjemdahl P, et al. Measurements of plasma norepinephrine concentrations in human primary hypertension – a word of caution on their applicability for assessing neurogenic contributions. Hypertension. 1983;5:399-403.PubMedCrossRefGoogle Scholar
  31. 31.
    Friberg P, Meredith I, Jennings G, et al. Evidence of increased renal noradrenaline spillover rate during sodium restriction in man. Hypertension. 1990;16:121-130.PubMedCrossRefGoogle Scholar
  32. 32.
    Lambert E, Dawood T, Schlaich M, et al. Single-unit sympathetic discharge pattern in pathological conditions associated with elevated cardiovascular risk. Clin Exp Pharmacol Physiol. 2008;35:503-507.PubMedCrossRefGoogle Scholar
  33. 33.
    Esler M, Eikelis N, Schlaich M, et al. Chronic mental stress is a cause of essential hypertension: presence of biological markers of stress. Clin Exp Pharmacol Physiol. 2008;35:498-502.PubMedCrossRefGoogle Scholar
  34. 34.
    Esler M, Eikelis N, Schlaich M, et al. Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann NY Acad Sci. 2008;1148:338-348.PubMedCrossRefGoogle Scholar
  35. 35.
    Joyner MJ, Dietz NM. Sympathetic vasodilatation in human muscle. Acta Physiol Scand. 2003;177:329-336.PubMedCrossRefGoogle Scholar
  36. 36.
    Willerson JT, Golino P, Eidt J, et al. Specific platelet mediators and unstable coronary artery lesions: experimental evidence and potential clinical implications. Circulation. 1989;80:198-205.PubMedCrossRefGoogle Scholar
  37. 37.
    Charakida M, Masi S, Lüscher TF, et al. Assessment of atherosclerosis: the role of flow ­mediated dilatation. Eur Heart J. 2010;31:2854-2861.PubMedCrossRefGoogle Scholar
  38. 38.
    Deanfield J, Donald A, Ferri C, et al. Endothelial function and dysfunction. Methodological issues for assessments in the different vascular beds: a statement by the Working Group on endothelin and endothelial factors of the European Society of hypertension. J Hypertens. 2005;23:7-17.PubMedCrossRefGoogle Scholar
  39. 39.
    Deanfield JE, Halcox JP, Rabelink JP. Endothelial function and dysfunction: testing and ­clinical relevance. Circulation. 2007;115:1285-1295.PubMedGoogle Scholar
  40. 40.
    Vanhoutte PM, Tang EHC. Endothelial contractions: when a good guy turns bad! J Physiol. 2008;586:5295-5304.PubMedCrossRefGoogle Scholar
  41. 41.
    Folkow B. Physiological aspects of the “defence” and “defeat” reactions. Acta Physiol Scand. 1997;640(suppl):34-37.Google Scholar
  42. 42.
    Brod J. Haemodynamic basis of acute pressor reactions and hypertension. Br Heart J. 1963;25:227-245.PubMedCrossRefGoogle Scholar
  43. 43.
    Freyschuss U, Hjemdahl P, Juhlin-Dannfelt A, Linde B. Cardiovascular and sympathoadrenal responses to mental stress: influence of β-blockade. Am J Physiol. 1988;255:H443-H451.Google Scholar
  44. 44.
    Brod J, Cachovan M, Bahlman J, et al. Haemodynamic response to an emotional stress (mental arithmetic) with special reference to the venous side. Aust N Z J Med. 1976;6(suppl2):19-25.PubMedCrossRefGoogle Scholar
  45. 45.
    Yeung AC, Vekshtein VI, Krantz DS, et al. The effect of atherosclerosis on the vasomotor response of coronary arteries to mental stress. N Engl J Med. 1991;325:1551-1556.PubMedCrossRefGoogle Scholar
  46. 46.
    Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med. 1986;315:1046-1051.PubMedCrossRefGoogle Scholar
  47. 47.
    Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol. 2007;293:R3-R12.Google Scholar
  48. 48.
    De Meersman RE, Stein PK. Vagal modulation and aging. Biol Psychol. 2007;74:165-173.PubMedCrossRefGoogle Scholar
  49. 49.
    Kaye DM, Esler MD. Autonomic control of the aging heart. Neuromol Med. 2008;10:179-186.CrossRefGoogle Scholar
  50. 50.
    Esler MD, Kaye DM, Thompson JM, et al. Effects of aging on epinephrine secretion, and on regional release of epinephrine from the human heart. J Clin Endocrinol Metab. 1995;80:435-442.PubMedCrossRefGoogle Scholar
  51. 51.
    Lindqvist M, Melcher A, Hjemdahl P. Hemodynamic and sympatho-adrenal responses to ­mental stress during nitric oxide synthesis blockade. Am J Physiol. 2004;287:H2309-H2315.Google Scholar
  52. 52.
    Linde B, Hjemdahl P, Freyschuss U, Juhlin-Dannfelt A. Adipose tissue and skeletal muscle blood flow during mental stress. Am J Physiol. 1989;256:E12-E18.PubMedGoogle Scholar
  53. 53.
    Hjemdahl P, Fagius J, Freyschuss U, et al. Muscle sympathetic nerve activity and norepinephrine release during mental challenge in humans. Am J Physiol. 1989;257:E654-E664.PubMedGoogle Scholar
  54. 54.
    Lindqvist M, Kahan T, Melcher A, et al. Forearm vasodilator mechanisms during mental stress – possible roles of epinephrine and ANP. Am J Physiol. 1996;270:E393-E399.PubMedGoogle Scholar
  55. 55.
    Rusch NJ, Shepherd JT, Webb RC, Vanhoutte PM. Different behaviour of the resistance ­vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Circ Res. 1981;48:I-118-I-130.Google Scholar
  56. 56.
    Dietz NM, Rivera JM, Eggener SE, et al. Nitric oxide contributes to the rise in forearm blood flow during mental stress in humans. J Physiol. 1994;480:361-368.PubMedGoogle Scholar
  57. 57.
    Ghiadoni L, Donald AE, Cropley M, et al. Mental stress induces transient endothelial dysfunction in humans. Circulation. 2000;102:2473-2478.PubMedCrossRefGoogle Scholar
  58. 58.
    Tidgren B, Hjemdahl P. Renal responses to mental stress and epinephrine in man. Am J Physiol. 1989;257:F682-F689.PubMedGoogle Scholar
  59. 59.
    Hollenberg NK, Williams GH, Adams DF. Essential hypertension: abnormal renal vascular and endocrine responses to a mild psychological stimulus. Hypertension. 1981;2:11-17.CrossRefGoogle Scholar
  60. 60.
    Tidgren B, Hjemdahl P. Reflex activation of renal nerves in humans – effects on noradrenaline, dopamine and renin overflow to renal venous plasma. Acta Physiol Scand. 1988;134:23-34.PubMedCrossRefGoogle Scholar
  61. 61.
    Freyschuss U, Hjemdahl P, Juhlin-Dannfelt A, Linde B. Cardiovascular and metabolic responses to low dose adrenaline infusion: an invasive study in humans. Clin Sci (Lond). 1986;70:199-206.Google Scholar
  62. 62.
    Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25:909-920.PubMedCrossRefGoogle Scholar
  63. 63.
    Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(part 2):724-728.PubMedCrossRefGoogle Scholar
  64. 64.
    Palatini P, Julius S. Heart rate and cardiovascular risk. J Hypertens. 1997;15:3-17.PubMedCrossRefGoogle Scholar
  65. 65.
    Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med. 1976;294:1165-1170.PubMedCrossRefGoogle Scholar
  66. 66.
    Verrier RL, Lown B. Behavioral stress and cardiac arrhythmias. Annu Rev Physiol. 1984;46:155-176.PubMedCrossRefGoogle Scholar
  67. 67.
    Strike PC, Steptoe A. Systematic review of mental stress-induced myocardial ischemia. Eur Heart J. 2003;24:690-703.PubMedCrossRefGoogle Scholar
  68. 68.
    Rehnqvist N, Hjemdahl P, Billing E, et al. Effects of metoprolol versus verapamil in patients with stable angina pectoris - the Angina Prognosis Study In Stockholm (APSIS). Eur Heart J. 1996;17:76-81.PubMedCrossRefGoogle Scholar
  69. 69.
    Forslund L, Björkander I, Ericson M, et al. Prognostic implications of autonomic function in patients with stable angina pectoris – analyses of catecholamines and heart rate variability in the APSIS study. Heart. 2002;87:415-422.PubMedCrossRefGoogle Scholar
  70. 70.
    Björkander I, Forslund L, Kahan T, et al. Differential index – a simple time domain heart rate variability method with prognostic implications in stable angina pectoris. Cardiology. 2008;111:126-33.PubMedCrossRefGoogle Scholar
  71. 71.
    Chida Y, Steptoe A. Greater cardiovascular responses to mental stress are associated with poor subsequent cardiovascular risk status. Hypertension. 2010;55:1026-1032.PubMedCrossRefGoogle Scholar
  72. 72.
    Flaa A, Eide IK, Kjeldsen SE, Rostrup M. Sympathoadrenal stress reactivity is a predictor of future blood pressure. An 18-year follow-up study. Hypertension. 2008;52:336-341.PubMedCrossRefGoogle Scholar
  73. 73.
    Kajantie E, Phillips DIW. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31:151-178.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Medicine, Solna, Clinical Pharmacology Unit, Karolinska InstituteKarolinska University Hospital/SolnaStockholmSweden
  2. 2.Hypertension Thrombosis and Vascular Biology DivisionBaker IDI Heart and Diabetes InstituteMelbourneAustralia

Personalised recommendations