Advertisement

Methodologies for Low-Reynolds Number Flows

  • S. Kalliadasis
  • C. Ruyer-Quil
  • B. Scheid
  • M. G. Velarde
Part of the Applied Mathematical Sciences book series (AMS, volume 176)

Abstract

We develop the long-wave theory for a film falling down a heated wall. The theory is based on a gradient expansion of the governing equations and wall and free-surface boundary conditions and leads to the Benney equation (BE—Chap. 1) for the evolution in time and space of the film thickness. A weakly nonlinear expansion of the equation leads to either the Kuramoto–Sivashinsky or the Kawahara equation depending on the distance from criticality, the orders-of-magnitude assignments of the different parameters and whether the film is inclined or vertical. BE fully resolves the behavior of the film close to the instability threshold, but it blows up in finite time at δ≃1, i.e., precisely where the transition between the drag-gravity and drag-inertia regimes takes place, as shown in Chap. 4. This in turn suggests that δ is the natural parameter for validation purposes/assessment of the validity of a model that aims to describe the dynamics of the film. The blow up behavior is strongly connected with the nonexistence of solitary waves of BE for δ≳1. A regularization procedure based on an extension of the Padé approximants technique to differential operators provides an evolution equation free of singularities which nevertheless seriously underestimates the amplitude and phase speed of the solitary waves at moderate Reynolds numbers. This is a direct consequence of slaving the dynamics of the film to its kinematics. It then seems that in the drag-inertia regime it is not possible to describe the dynamics of the flow with a single evolution equation for the film thickness.

Keywords

Solitary Wave Travel Wave Solution Homoclinic Orbit Solitary Wave Solution Homoclinic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 3.
    Alekseenko, S.V., Nakoryakov, V.E., Pokusaev, B.G.: Wave Flow in Liquid Films, 3rd edn. Begell House, New York (1994) Google Scholar
  2. 18.
    Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978) zbMATHGoogle Scholar
  3. 21.
    Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150–155 (1966) MathSciNetzbMATHGoogle Scholar
  4. 22.
    Bertozzi, A.L., Pugh, M.: Long-wave instabilities and saturation in thin film equations. Commun. Pure Appl. Math. 51, 625–661 (1998) MathSciNetCrossRefGoogle Scholar
  5. 44.
    Chang, H.-C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films. D. Möbius and R. Miller. Elsevier, Amsterdam (2002) Google Scholar
  6. 47.
    Chang, H.-C., Demekhin, E.A., Kalaidin, E.: Generation and suppression of radiation by solitary pulses. SIAM J. Appl. Math. 58(4), 1246–1277 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 48.
    Chang, H.-C., Demekhin, E.A., Kopelevitch, D.I.: Construction of stationary waves on a falling film. Comput. Mech. 11, 313–322 (1993) zbMATHCrossRefGoogle Scholar
  8. 49.
    Chang, H.-C., Demekhin, E.A., Kopelevitch, D.I.: Laminarizing effects of dispersion in an active-dissipative nonlinear medium. Physica D 63, 299–320 (1993) zbMATHCrossRefGoogle Scholar
  9. 50.
    Chang, H.-C., Demekhin, E.A., Kopelevitch, D.I.: Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433–480 (1993) MathSciNetCrossRefGoogle Scholar
  10. 51.
    Chang, H.-C., Demekhin, E.A., Kopelevitch, D.I.: Local stability theory of solitary pulses in an active medium. Physica D 97, 353–375 (1996) zbMATHCrossRefGoogle Scholar
  11. 55.
    Christov, C.I., Velarde, M.G.: Dissipative solitons. Physica D 86, 323–347 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 75.
    Demekhin, E.A., Kalaidin, E.N., Kalliadasis, S., Vlaskin, S.Yu.: Three-dimensional localized coherent structures of surface turbulence: I. Scenarios of two-dimensional three-dimensional transitions. Phys. Fluids 19, 114103 (2007) CrossRefGoogle Scholar
  13. 79.
    Doedel, E.J.: AUTO07p continuation and bifurcation software for ordinary differential equations. Montreal Concordia University (2008) Google Scholar
  14. 95.
    Frenkel, A.L.: Nonlinear theory of strongly undulating thin films flowing down vertical cylinders. Europhys. Lett. 18, 583–588 (1992) CrossRefGoogle Scholar
  15. 96.
    Friedman, B.: Principles and Techniques of Applied Mathematics. Wiley, New York (1956) zbMATHGoogle Scholar
  16. 100.
    Garazo, A.N., Velarde, M.G.: Dissipative Korteweg–de Vries description of Marangoni–Bénard oscillatory convection. Phys. Fluids 3, 2295–2300 (1991) zbMATHCrossRefGoogle Scholar
  17. 102.
    Gjevik, B.: Occurrence of finite-amplitude surface waves on falling liquid films. Phys. Fluids 13, 1918–1925 (1970) zbMATHCrossRefGoogle Scholar
  18. 111.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983) zbMATHGoogle Scholar
  19. 115.
    Hinch, E.J.: Perturbation Methods. Cambridge University Press, London (1991) zbMATHGoogle Scholar
  20. 117.
    Hocherman, T., Rosenau, P.: On KS-type equations describing the evolution and rupture of a liquid interface. Physica D 67, 113 (1993) zbMATHCrossRefGoogle Scholar
  21. 123.
    Iooss, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer, New York (1980) zbMATHGoogle Scholar
  22. 128.
    Joo, S.W., Davis, S.H., Bankoff, S.G.: Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117–146 (1991) zbMATHCrossRefGoogle Scholar
  23. 135.
    Kalliadasis, S.: Nonlinear instability of a contact line driven by gravity. J. Fluid Mech. 413, 355–378 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 136.
    Kalliadasis, S., Chang, H.-C.: Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135–168 (1994) zbMATHCrossRefGoogle Scholar
  25. 139.
    Kalliadasis, S., Demekhin, E.A., Ruyer-Quil, C., Velarde, M.G.: Thermocapillary instability and wave formation on a film flowing down a uniformly heated plane. J. Fluid Mech. 492, 303–338 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 141.
    Kapitza, P.L., Kapitza, S.P.: Wave flow of thin layers of a viscous fluid: III. Experimental study of undulatory flow conditions. In: ter Haar, D. (Ed.) Collected Papers of P.L. Kapitza (1965), pp. 690–709. Pergamon, Oxford (1949). (Original paper in Russian: Zh. Eksp. Teor. Fiz. 19, 105–120) Google Scholar
  27. 144.
    Kawahara, T.: Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation. Phys. Rev. Lett. 51, 381–383 (1983) CrossRefGoogle Scholar
  28. 145.
    Kawahara, T., Toh, S.: Pulse interactions in an unstable dissipative-dispersive nonlinear system. Phys. Fluids 31, 2103–2111 (1988) MathSciNetCrossRefGoogle Scholar
  29. 150.
    Kliakhandler, I.L., Porubov, A.V., Velarde, M.G.: Localized finite-amplitude disturbances and selection of solitary waves. Phys. Rev. E 62(4), 4959–4962 (2000) CrossRefGoogle Scholar
  30. 170.
    Liu, J., Schneider, J.B., Gollub, J.P.: Three-dimensional instabilities of film flows. Phys. Fluids 7, 55–67 (1995) MathSciNetCrossRefGoogle Scholar
  31. 177.
    Manneville, P.: Dissipative Structures and Weak Turbulence. Academic Press, New York (1990) zbMATHGoogle Scholar
  32. 185.
    Nakaya, C.: Long waves on a viscous fluid down a vertical wall. Phys. Fluids A, Fluid Dyn. 18, 1407–1412 (1975) zbMATHGoogle Scholar
  33. 186.
    Nakaya, C.: Waves on a viscous fluid down a vertical wall. Phys. Fluids A, Fluid Dyn. 1, 1143 (1989) zbMATHCrossRefGoogle Scholar
  34. 188.
    Nepomnyashchy, A.A.: Three-dimensional spatially periodic motions in liquid films flowing down a vertical plane. Hydrodynam. Perm 7, 43–52 (1974). (In Russian) Google Scholar
  35. 189.
    Nepomnyashchy, A.A., Velarde, M.G., Colinet, P.: Interfacial Phenomena and Convection. Chapman & Hall/CRC, London (2002) zbMATHGoogle Scholar
  36. 196.
    Ooshida, T.: Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11, 3247–3269 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 198.
    Oron, A., Gottlieb, O.: Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids 14, 2622–2636 (2002) MathSciNetCrossRefGoogle Scholar
  38. 199.
    Oron, A., Gottlieb, O.: Subcritical and supercritical bifurcations of the first- and second-order Benney equations. J. Eng. Math. 50, 121–140 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  39. 200.
    Oron, A., Rosenau, P.: Evolution and formation of dispersive-dissipative patterns. Phys. Rev. E 55, 1267–1270 (1997) CrossRefGoogle Scholar
  40. 216.
    Pumir, A., Manneville, P., Pomeau, Y.: On solitary waves running down an inclined plane. J. Fluid Mech. 135, 27–50 (1983) zbMATHCrossRefGoogle Scholar
  41. 218.
    Ramaswamy, B., Chippada, S., Joo, S.W.: A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163–194 (1996) zbMATHCrossRefGoogle Scholar
  42. 232.
    Salamon, T.R., Armstrong, R.C., Brown, R.A.: Traveling waves on vertical films: Numerical analysis using the finite element method. Phys. Fluids 6, 2202 (1994) zbMATHCrossRefGoogle Scholar
  43. 241.
    Scheid, B., Ruyer-Quil, C., Thiele, U., Kabov, O.A., Legros, J.C., Colinet, P.: Validity domain of the Benney equation including the Marangoni effect for closed and open flows. J. Fluid Mech. 527, 303–335 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  44. 273.
    Tihon, J., Serifi, K., Argyiriadi, K., Bontozoglou, V.: Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp. Fluids 41, 79–89 (2006) CrossRefGoogle Scholar
  45. 279.
    Trevelyan, P.M.J., Scheid, B., Ruyer-Quil, C., Kalliadasis, S.: Heated falling films. J. Fluid Mech. 592, 295–334 (2007) zbMATHCrossRefGoogle Scholar
  46. 289.
    Van Hook, S.J., Schatz, M.F., Swift, J.B., McCormick, W.D., Swinney, H.L.: Long wavelength surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 345, 45–78 (1997) MathSciNetCrossRefGoogle Scholar
  47. 290.
    Velarde, M.G., Zeytounian, R. Kh. (Eds.): Interfacial Phenomena and the Marangoni Effect. Springer-Wien, New York (2002) zbMATHGoogle Scholar
  48. 299.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • S. Kalliadasis
    • 1
  • C. Ruyer-Quil
    • 2
  • B. Scheid
    • 3
  • M. G. Velarde
    • 4
  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK
  2. 2.Laboratoire FASTUniversité Pierre et Marie Curie (UPMC)ParisFrance
  3. 3.TIPs—Fluid Physics UnitUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Instituto PluridisciplinarUniversidad ComplutenseMadridSpain

Personalised recommendations