Skip to main content

Open Questions and Suggestions for Further Research

  • Chapter
Falling Liquid Films

Part of the book series: Applied Mathematical Sciences ((AMS,volume 176))

  • 2308 Accesses

Abstract

In this final chapter, we present a number of open questions that still demand an answer. Our hope is to motivate further research devoted to the fascinating dynamics of falling film flows. We also believe that the methodology developed in Chap. 6, and applied to isothermal film flows (Chaps. 7 and 8) and to heated film flows (Chap. 9), can be extended to a wide variety of problems which have not been described in previous chapters. Some of them are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alleborn, N.: Progress in coating theory. Therm. Sci. 5(1), 131–152 (2001)

    MathSciNet  Google Scholar 

  2. Alleborn, N., Durst, F., Lienhart, H.: Use of curtain coating for surface treatment of concrete construction parts. Chem. Ing. Tech. 77, 84–89 (1996). (In German)

    Article  Google Scholar 

  3. Argyriadi, K., Vlachogiannis, M., Bontozoglou, V.: Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys. Fluids 18, 012102 (2006)

    Article  Google Scholar 

  4. Balmforth, N.J., Liu, J.J.: Roll waves in mud. J. Fluid Mech. 519, 33–54 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bamforth, J.R., Kalliadasis, S., Merkin, J.H., Scott, S.K.: Modelling flow-distributing oscillations in the CDIMA reaction. Phys. Chem. Chem. Phys. 2, 4013–4021 (2000)

    Article  Google Scholar 

  6. Cachile, M., Schneemilch, M., Hamraoui, A., Cazabat, A.M.: Films driven by surface tension gradients. Adv. Colloid Interface Sci. 96, 59–74 (2002)

    Article  Google Scholar 

  7. Chan, B., Balmforth, N.J., Hosoi, A.E.: Building a better snail: lubrication and adhesive locomotion. Phys. Fluids 17, 113101 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chang, H.-C., Demekhin, E.A.: Coherent structures, self similarity, and universal roll-wave coarsening dynamics. Phys. Fluids 12(9), 2268–2278 (2000)

    Article  MathSciNet  Google Scholar 

  9. Chang, H.-C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films. D. Möbius and R. Miller. Elsevier, Amsterdam (2002)

    Google Scholar 

  10. Craster, R.V., Matar, O.K.: On viscous beads flowing down a vertical fibre. J. Fluid Mech. 553, 85–105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)

    Article  Google Scholar 

  12. Dáválos-Orozco, L.A.: Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19, 074103 (2007)

    Article  Google Scholar 

  13. Dáválos-Orozco, L.A., Busse, F.H.: Instability of a thin film flowing on a rotating horizontal or inclined plane. Phys. Rev. E 65, 026312 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dáválos-Orozco, L.A., Ruiz-Chavarria, G.: Hydrodynamic stability of a fluid layer flowing down a rotating inclined plane. Phys. Fluids A, Fluid Dyn. 4(8), 1651–1665 (1992)

    Article  MATH  Google Scholar 

  15. Dáválos-Orozco, L.A., Ruiz-Chavarria, G.: Hydrodynamic instability of a fluid layer flowing down a rotating cylinder. Phys. Fluids A, Fluid Dyn. 5(10), 2390–2404 (1993)

    Article  MATH  Google Scholar 

  16. de Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)

    MATH  Google Scholar 

  17. De Wit, A.: Fingering of chemical fronts in porous media. Phys. Rev. Lett. 87, 054502 (2002)

    Article  Google Scholar 

  18. Diez, J.A., Kondic, L., Bertozzi, A.: Global models for moving contact lines. Phys. Rev. E 63, 011208 (2000)

    Article  Google Scholar 

  19. Duprat, C., Ruyer-Quil, C., Giorgiutti-Dauphiné, F.: Spatial evolution of a film flowing down a fiber. Phys. Fluids 21, 042109 (2009)

    Article  Google Scholar 

  20. Duprat, C., Ruyer-Quil, C., Kalliadasis, S., Giorgiutti-Dauphiné, F.: Absolute and convective instabilities of a film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502 (2007)

    Article  Google Scholar 

  21. Dussan, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65, 71–95 (1974)

    Article  MATH  Google Scholar 

  22. Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech. 11, 371–400 (1979)

    Article  Google Scholar 

  23. Gondret, P., Rabaud, M.: Shear instability of two-fluid parallel flow in a Hele–Shaw cell. Phys. Fluids 9(11), 3267–3274 (1997)

    Article  MathSciNet  Google Scholar 

  24. Grotberg, J.B.: Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529–571 (1994)

    Article  Google Scholar 

  25. Häcker, T., Uecker, H.: An integral boundary layer equation for film flow over inclined wavy bottoms. Phys. Fluids 21, 092105 (2009)

    Article  Google Scholar 

  26. Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85–101 (1971)

    Article  Google Scholar 

  27. Joseph, D.D., Bai, R., Chen, K.P., Renardy, Y.Y.: Core-annular flows. Annu. Rev. Fluid Mech. 29, 65–90 (1997)

    Article  MathSciNet  Google Scholar 

  28. Kalliadasis, S., Chang, H.-C.: Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135–168 (1994)

    Article  MATH  Google Scholar 

  29. Kargupta, K., Sharma, A.: Dewetting of thin films on periodic physically and chemically patterned surfaces. Langmuir 18, 1893–1903 (2002)

    Article  Google Scholar 

  30. Kataoka, D.E., Troian, S.M.: Patterning liquid flow on the microscopic scale. Nature 402, 794–797 (1999)

    Article  Google Scholar 

  31. Kistler, S.F., Schweitzer, P.M.: Liquid Film Coating: Scientific Principles and Their Technological Implications. Chapman & Hall, London (1997)

    Google Scholar 

  32. Kliakhandler, I.L., Davis, S.H., Bankoff, S.G.: Viscous beads on vertical fibre. J. Fluid Mech. 429, 381–390 (2001)

    Article  MATH  Google Scholar 

  33. Kondic, L.: Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45(1), 95–115 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kondic, L., Diez, J.: Flow of thin films on patterned surfaces: controlling the instability. Phys. Rev. E 45, 045301 (2002)

    Article  Google Scholar 

  35. Kondic, L., Palffy-Muhoray, P., Shelley, M.J.: Models of non-Newtonian Hele–Shaw flow. Phys. Rev. E 54(5), 4536–4539 (1996)

    Article  Google Scholar 

  36. Lamger, J.S.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52(1), 1–28 (1980)

    Article  Google Scholar 

  37. Lin, S.P., Jiang, W.Y.: The mechanism of suppression or enhancement of three-dimensional surface waves in film flow down a vertical plane. Phys. Fluids 14(2), 4088 (2002)

    Article  MathSciNet  Google Scholar 

  38. Lin, S.P., Chen, J.N., Woods, D.R.: Suppression of instability in a liquid film flow. Phys. Fluids 8(12), 3247–3252 (1996)

    Article  MATH  Google Scholar 

  39. Liu, K., Mei, C.C.: Roll waves on a layer of a muddy fluid flowing down a gentle slope—a Bingham model. Phys. Fluids 6(8), 2577–2589 (1994)

    Article  MATH  Google Scholar 

  40. Liu, Q.Q., Chen, L., Li, J.C., Singh, V.P.: Roll waves in overland flow. J. Hydrol. Eng. 10(2), 110–117 (2005)

    Article  Google Scholar 

  41. Lopez, P.G., Miksis, M.J., Bankoff, S.G.: Inertial effects on contact line instability in the coating of a dry inclined plane. Phys. Fluids 9, 2177–2183 (1997)

    Article  Google Scholar 

  42. Meron, E.: Pattern formation in excitable media. Phys. Rep. 218, 1–66 (1992)

    Article  MathSciNet  Google Scholar 

  43. Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1 (1964)

    Article  MATH  Google Scholar 

  44. Moldavsky, L., Frichman, M., Oron, A.: Dynamics of thin films falling on vertical cylindrical Durfaces subjected to ultrasound forcing. Phys. Rev. E 76, 045301 (2007)

    Article  Google Scholar 

  45. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  Google Scholar 

  46. Pascal, J.P.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D, Appl. Phys. 32, 417–422 (1999)

    Article  Google Scholar 

  47. Pascal, J.P.: Instability of power-law fluid flow down a porous incline. J. Non-Newton. Fluid Mech. 133, 109–120 (2006)

    Article  MATH  Google Scholar 

  48. Pereira, A., Kalliadasis, S.: Dynamics of a falling film with solutal Marangoni effect. Phys. Rev. E 78, 036312 (2008)

    Article  Google Scholar 

  49. Pereira, A., Trevelyan, P.M.J., Thiele, U., Kalliadasis, S.: Dynamics of a horizontal thin liquid film in the presence of reactive surfactants. Phys. Fluids 19, 112102 (2007)

    Article  Google Scholar 

  50. Pereira, A., Trevelyan, P.M.J., Thiele, U., Kalliadasis, S.: Interfacial hydrodynamic waves driven by chemical reactions. J. Eng. Math. 59, 207–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pradas, M., Tseluiko, D., Kalliadasis, S.: Rigorous coherent-structure theory for falling liquid films: Viscous dispersion effects on bound-state formation and self-organization. Phys. Fluids 23, 044104 (2011)

    Article  Google Scholar 

  52. Quéré, D.: Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347–384 (1999)

    Article  Google Scholar 

  53. Ruyer-Quil, C.: Inertial corrections to the Darcy law in a Hele–Shaw cell. C. R. Acad. Sci. Sér. IIb 329, 337–342 (2001)

    MATH  Google Scholar 

  54. Ruyer-Quil, C., Treveleyan, P., Giorgiutti-Dauphiné, F., Duprat, C., Kalliadasis, S.: Modelling film flows down a fibre. J. Fluid Mech. 603, 431–462 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Saprykin, S., Koopmans, R.J., Kalliadasis, S.: Free-surface thin-film flows over topography: influence of inertia and viscoelasticity. J. Fluid Mech. 578, 271–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Scott, S.K.: Chemical Chaos. Oxford University Press, London (1993)

    Google Scholar 

  57. Shankar, V., Sharma, A.: Instability of the interface between thin fluid films subjected to electric fields. Langmuir 21, 3710–3721 (2005)

    Article  Google Scholar 

  58. Shkadov, V.Ya., Velarde, M.G., Shkadova, V.P.: Falling films and the Marangoni effect. Phys. Rev. E 69, 056310 (2004)

    Article  MathSciNet  Google Scholar 

  59. Spindler, B.: Linear stability of liquid films with interfacial phase change. Int. J. Heat Mass Transf. 25(2), 161–173 (1982)

    Article  MATH  Google Scholar 

  60. Thiele, U., Goyeau, B., Velarde, M.G.: Stability analysis of thin film flow along a heated porous substrate. Phys. Fluids 21, 014103 (2009)

    Article  Google Scholar 

  61. Tiffany, J.M.: The viscosity of human tears. Int. Ophthalmol. 15, 371–376 (1991)

    Article  Google Scholar 

  62. Trevelyan, P.M.J., Kalliadasis, S.: Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation. Phys. Fluids 16, 3191–3208 (2004)

    Article  MathSciNet  Google Scholar 

  63. Trevelyan, P.M.J., Kalliadasis, S.: Dynamics of a reactive falling film at large Péclet numbers. II. Nonlinear waves far from criticality: Integral-boundary-layer approximation. Phys. Fluids 16, 3209–3226 (2004)

    Article  MathSciNet  Google Scholar 

  64. Trevelyan, P.M.J., Kalliadasis, S., Merkin, J.H., Scott, S.K.: Dynamics of a vertically falling film in the presence of a first-order chemical reaction. Phys. Fluids 14, 2402–2121 (2002)

    Article  Google Scholar 

  65. Trifonov, Yu.Ya.: Steady-state travelling waves on the surface of a viscous liquid film falling down vertucal wires and tubes. AIChE J. 38, 821–834 (1992)

    Article  Google Scholar 

  66. Tseluiko, D., Saprykin, S., Kalliadasis, S.: Interaction of solitary pulses in active dispersive-dissipative media. Proc. Est. Acad. Sci. 59, 139–144 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Tseluiko, D., Blyth, M.G., Papageorgiou, D.T., Vanden-Broeck, J.-M.: Electrified viscous thin film flow over topography. J. Fluid Mech. 597, 449–475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Tseluiko, D., Saprykin, S., Duprat, C., Giorgiutti-Dauphiné, F., Kalliadasis, S.: Pulse dynamics in low-Reynolds-number interfacial hydrodynamics: Experiments and theory. Physica D 239, 2000–2010 (2010)

    Article  MATH  Google Scholar 

  69. Verma, R., Sharma, A., Kargupta, K., Bhaumik, J.: Electric field induced instability and pattern formation in thin liquid films. Langmuir 21, 3710–3721 (2005)

    Article  Google Scholar 

  70. Weinstein, S.J., Ruschak, K.J.: Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004)

    Article  Google Scholar 

  71. Yang, J., D’Onofrio, A., Kalliadasis, S., De Wit, A.: Rayleigh–Taylor instability of reaction-diffusion acidity fronts. J. Chem. Phys. 117, 9395–9408 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalliadasis .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M.G. (2012). Open Questions and Suggestions for Further Research. In: Falling Liquid Films. Applied Mathematical Sciences, vol 176. Springer, London. https://doi.org/10.1007/978-1-84882-367-9_10

Download citation

Publish with us

Policies and ethics