Skip to main content

Light Therapies for Cutaneous T-Cell Lymphoma

  • Chapter
  • First Online:
Light-Based Therapies for Skin of Color

Cutaneous T-cell lymphomas (CTCL) represent a broad group of non-Hodgkin’s lymphomas with considerable heterogeneity with respect to clinical presentation, histology, immunophenotype, and prognosis. The preferential localization of the malignant T-cell clone to the skin is a hallmark feature characteristic of all primary CTCL.1,2

Mycosis fungoides (MF) and the Sézary syndrome (SS) make up the majority of cases of CTCL. The term MF was originally coined by Alibert and Bazin 200 years ago because of the mushroom-like appearance of the tumors. SS is the leukemic variant of CTCL, classically described by the triad of erythroderma, lymphadenopathy, and the presence of the malignant T-cell clone in the blood. SS was previously categorized as a subtype of MF; however, the new WHO-European Organization of Research and Treatment of Cancer (EORTC) classification system scheme lists MF and SS as separate entities (Table 8.1). Given the heterogeneity in clinical, pathological, and prognostic features of cutaneous lymphomas, it is important to distinguish MF from other forms of primary CTCL (Table 8.1).3 Also, distinction between primary and secondary/nodal CTCL is very important as primary cutaneous lymphomas have a slow and indolent clinical course as opposed to their systemic counterparts when systemic manifestations and internal organ involvement are present from the time of diagnosis, and skin involvement is a secondary phenomenon2 (for review, see Ferenczi and Kupper 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Mackie R. In: Burton JL, Champion RH, Burns PA, Breathnack SM, eds. Cutaneous Lymphomas and Lymphocytic Infiltrates. Oxford: Blackwell Science; 1998:2373–2402.

    Google Scholar 

  2. 2. Willemze R, Meijer CJ. Classification of cutaneous T-cell lymphoma: from Alibert to WHO-EORTC. J Cutan Pathol. 2006;33(Suppl 1):18–26.

    PubMed  Google Scholar 

  3. 3. Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–3785.

    PubMed  CAS  Google Scholar 

  4. 4. Ferenczi K, McKee P, Kupper TS, Cutaneous lymphoma. In: Sober H, ed. Atlas of Clinical Oncology. Hamilton, Ontario: BC Decker;2000:85–117.

    Google Scholar 

  5. 5. Criscione VD, Weinstock MA. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007;143(7):854–859.

    PubMed  Google Scholar 

  6. 6. Keehn CA, Belongie IP, Shistik G, et al. The diagnosis, staging, and treatment options for mycosis fungoides. Cancer Control. 2007;14(2):102–111.

    PubMed  Google Scholar 

  7. 7. Ferenczi K, Fuhlbrigge RC, Pinkus J, Pinkus GS, Kupper TS. Increased CCR4 expression in cutaneous T cell lymphoma. J Invest Dermatol. 2002;119(6):1405–1410.

    PubMed  CAS  Google Scholar 

  8. 8. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–222.

    PubMed  CAS  Google Scholar 

  9. 9. Berger CL, Hanlon D, Kanada D, et al. The growth of cutaneous T-cell lymphoma is stimulated by immature dendritic cells. Blood. 2002;99(8):2929–2939.

    PubMed  CAS  Google Scholar 

  10. Yawalkar N, Ferenczi K, Jones DA, et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood. 2003;102(12):4059–4066.

    PubMed  CAS  Google Scholar 

  11. Wysocka M, Zaki MH, French LE, et al. Sezary syndrome patients demonstrate a defect in dendritic cell populations: effects of CD40 ligand and treatment with GM-CSF on dendritic cell numbers and the production of cytokines. Blood. 2002;100(9):3287–3294.

    PubMed  CAS  Google Scholar 

  12. Kim EJ, Hess S, Richardson SK, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. J Clin Invest., 2005;115(4):798–812.

    PubMed  CAS  Google Scholar 

  13. Hwang ST, Janik JE, Jaffe ES, Wilson WH. Mycosis fungoides and Sezary syndrome. Lancet. 2008;371(9616):945–957.

    PubMed  CAS  Google Scholar 

  14. Karenko L, Hahtola S, Päivinen S et al. Primary cutaneous T-cell lymphomas show a deletion or translocation affecting NAV3, the human UNC-53 homologue. Cancer Res. 2005;65(18):8101–8110.

    PubMed  CAS  Google Scholar 

  15. Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker SJ. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood. 2003;101(4):1513–1519.

    PubMed  CAS  Google Scholar 

  16. Eriksen KW, Kaltoft K, Mikkelsen G et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15(5):787–793.

    PubMed  CAS  Google Scholar 

  17. Dereure O, Levi E, Vonderheid EC, Kadin ME. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. J Invest Dermatol. 2002;118(6):949–956.

    PubMed  CAS  Google Scholar 

  18. Nagasawa T, Takakuwa T, Takayama H et al. Fas gene mutations in mycosis fungoides: analysis of laser capture-microdissected specimens from cutaneous lesions. Oncology. 2004;67(2):130–134.

    PubMed  CAS  Google Scholar 

  19. van Doorn R, Dijkman R, Vermeer MH, Starink TM, Willemze R, Tensen CP. A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer Res. 2002;62(19):5389–5392.

    PubMed  CAS  Google Scholar 

  20. Dummer R, Michie SA, Kell D et al. Expression of bcl-2 protein and Ki-67 nuclear proliferation antigen in benign and malignant cutaneous T-cell infiltrates. J Cutan Pathol. 1995;22(1):11–17.

    PubMed  CAS  Google Scholar 

  21. Gilchrest BA, Parrish JA, Tanenbaum L, Haynes HA, Fitzpatrick TB. Oral methoxsalen photochemotherapy of mycosis fungoides. Cancer. 1976;38(2):683–689.

    PubMed  CAS  Google Scholar 

  22. Qari MS, Li N, Demierre MF. Hypopigmented mycosis fungoides: case reports and literature review. J Cutan Med Surg. 2000;4(3):142–148.

    PubMed  CAS  Google Scholar 

  23. Pimpinelli N, Olsen EA, Santucci M et al. Defining early mycosis fungoides. J Am Acad Dermatol. 2005;53(6):1053–1063.

    PubMed  Google Scholar 

  24. Haghighi B, Smoller BR, LeBoit PE, Warnke RA, Sander CA, Kohler S. Pagetoid reticulosis (Woringer-Kolopp disease): an immunophenotypic, molecular, and clinicopathologic study. Mod Pathol. 2000;13(5):502–510.

    PubMed  CAS  Google Scholar 

  25. El-Shabrawi-Caelen L, Cerroni L, Medeiros LJ, McCalmont TH. Hypopigmented mycosis fungoides: frequent expression of a CD8+ T-cell phenotype. Am J Surg Pathol. 2002;26(4):450–457.

    PubMed  Google Scholar 

  26. Hoppe RT, Medeiros LJ, Warnke RA, Wood GS. CD8-positive tumor-infiltrating lymphocytes influence the long-term survival of patients with mycosis fungoides. J Am Acad Dermatol. 1995;32(3):448–453.

    PubMed  CAS  Google Scholar 

  27. Berti E, Tomasini D, Vermeer MH, Meijer CJ, Alessi E, Willemze R. Primary cutaneous CD8-positive epidermotropic cytotoxic T cell lymphomas: a distinct clinicopathological entity with an aggressive clinical behavior. Am J Pathol. 1999;155(2):483–492.

    PubMed  CAS  Google Scholar 

  28. Vergier B, de Muret A, Beylot-Barry M et al. Transformation of mycosis fungoides: clinicopathological and prognostic features of 45 cases: French Study Group of Cutaneious Lymphomas. Blood. 2000;95(7):2212–2218.

    PubMed  CAS  Google Scholar 

  29. Salhany KE, Cousar JB, Greer JP, Casey TT, Fields JP, Collins RD. Transformation of cutaneous T cell lymphoma to large cell lymphoma: a clinicopathologic and immunologic study. Am J Pathol. 1988;132(2):265–277.

    PubMed  CAS  Google Scholar 

  30. Cerroni L, Rieger E, Hödl S, Kerl H. Clinicopathologic and immunologic features associated with transformation of mycosis fungoides to large-cell lymphoma. Am J Surg Pathol. 1992;16(6):543–552.

    PubMed  CAS  Google Scholar 

  31. Smoller BR, Santucci M, Wood GS, Whittaker SJ. Histopathology and genetics of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2003;17(6):1277–1311.

    PubMed  Google Scholar 

  32. Ponti R, Quaglino P, Novelli M et al. T-cell receptor gamma gene rearrangement by multiplex polymerase chain reaction/heteroduplex analysis in patients with cutaneous T-cell lymphoma (mycosis fungoides/Sezary syndrome) and benign inflammatory disease: correlation with clinical, histological and immunophenotypical findings. Br J Dermatol. 2005;153(3):565–573.

    PubMed  CAS  Google Scholar 

  33. Poszepczynska-Guigne E, Bagot M, Wechsler J, Revuz J, Farcet JP, Delfau-Larue MH. et al Minimal residual disease in mycosis fungoides follow-up can be assessed by polymerase chain reaction. Br J Dermatol. 2003;148(2):265–271.

    PubMed  CAS  Google Scholar 

  34. Olsen E, Vonderheid E, Pimpinelli N. et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood. 2007;110(6):1713–1722.

    PubMed  CAS  Google Scholar 

  35. Kim YH, Liu HL, Mraz-Gernhard S, Varghese A, Hoppe RT. Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol. 2003;139(7):857–866.

    PubMed  Google Scholar 

  36. Sausville EA, Eddy JL, Makuch RW et al. Histopathologic staging at initial diagnosis of mycosis fungoides and the Sezary syndrome: definition of three distinctive prognostic groups. Ann Intern Med. 1988;109(5):372–382.

    PubMed  CAS  Google Scholar 

  37. Halder RM, Bang KM. Skin cancer in blacks in the United States. Dermatol Clin. 1988;6(3):397–405.

    PubMed  CAS  Google Scholar 

  38. Gloster Jr. HM, Neal K. Skin cancer in skin of color. J Am Acad Dermatol. 2006;55(5):741–760; quiz 761-764.

    PubMed  Google Scholar 

  39. Akaraphanth R, Douglass MC, Lim HW. Hypopigmented mycosis fungoides: treatment and a 6(1/2)-year follow-up of 9 patients. J Am Acad Dermatol. 2000;42(1 Pt 1):33–39.

    PubMed  CAS  Google Scholar 

  40. Naeem H, Cheng SX, Kupper TS. Treatment of Primary Cutaneous Lymphomas. In: Sober H, ed. Atlas of Clinical Oncology. Hamilton, Ontario: BC Decker; 2000.

    Google Scholar 

  41. Baron ED, Stevens SR. Phototherapy for cutaneous T-cell lymphoma. Dermatol Ther. 2003;16(4):303–310.

    PubMed  Google Scholar 

  42. Kawada A. UVB-induced erythema, delayed tanning, and UVA-induced immediate tanning in Japanese skin. Photodermatol. 1986;3(6): p327–333.

    PubMed  CAS  Google Scholar 

  43. Danno K. PUVA therapy: current concerns in Japan. J Dermatol Sci. 1999;19(2):89–105.

    PubMed  CAS  Google Scholar 

  44. Agin PP, Desrochers DL, Sayre RM. The relationship of immediate pigment darkening to minimal erythemal dose, skin type, and eye color. Photodermatol. 1985;2(5):288–294.

    PubMed  CAS  Google Scholar 

  45. Andreassi L, Simoni S, Fiorini P, Fimiani M. Phenotypic characters related to skin type and minimal erythemal dose. Photodermatol. 1987;4(1):43–46.

    PubMed  CAS  Google Scholar 

  46. Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9(2):135–160.

    PubMed  CAS  Google Scholar 

  47. Palmer RA, Aquilina S, Milligan PJ, Walker SL, Hawk JL, Young AR. Photoadaptation during narrowband ultraviolet-B therapy is independent of skin type: a study of 352 patients. J Invest Dermatol. 2006;126(6):1256–1263.

    PubMed  CAS  Google Scholar 

  48. Stamatas GN, Kollias N. Blood stasis contributions to the perception of skin pigmentation. J Biomed Opt. 2004;9(2):315–322.

    PubMed  Google Scholar 

  49. Zonios GJ, Bykowski, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001;117(6):1452–1457.

    PubMed  CAS  Google Scholar 

  50. Johnson R, Staiano-Coico L, Austin L, Cardinale I, Nabeya-Tsukifuji R, Krueger JG. PUVA treatment selectively induces a cell cycle block and subsequent apoptosis in human T-lymphocytes. Photochem Photobiol. 1996;63(5):566–571.

    PubMed  CAS  Google Scholar 

  51. Yoo EK, Rook AH, Elenitsas R, Gasparro FP, Vowels BR. Apoptosis induction of ultraviolet light A and photochemotherapy in cutaneous T-cell lymphoma: relevance to mechanism of therapeutic action. J Invest Dermatol. 1996;107(2):235–242.

    PubMed  CAS  Google Scholar 

  52. Fox FE, Niu Z, Tobia A, Rook AH. Photoactivated hypericin is an anti-proliferative agent that induces a high rate of apoptotic death of normal, transformed, and malignant T lymphocytes: implications for the treatment of cutaneous lymphoproliferative and inflammatory disorders. J Invest Dermatol. 1998;111(2):327–332.

    PubMed  CAS  Google Scholar 

  53. Bladon J, Taylor PC. Extracorporeal photopheresis induces apoptosis in the lymphocytes of cutaneous T-cell lymphoma and graft-versus-host disease patients. Br J Haematol. 1999;107(4):707–711.

    PubMed  CAS  Google Scholar 

  54. Zhang C, Richon V, Ni X, Talpur R, Duvic M. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol. 2005;125(5):1045–1052.

    PubMed  CAS  Google Scholar 

  55. Rivas JM, Ullrich SE. The role of IL-4, IL-10, and TNF-alpha in the immune suppression induced by ultraviolet radiation. J Leukoc Biol. 1994;56(6):769–775.

    PubMed  CAS  Google Scholar 

  56. Ullrich SE. Mechanism involved in the systemic suppression of antigen-presenting cell function by UV irradiation: keratinocyte-derived IL-10 modulates antigen-presenting cell function of splenic adherent cells. J Immunol. 1994;152(7):3410–3416.

    PubMed  CAS  Google Scholar 

  57. Walterscheid JP, Ullrich SE, Nghiem DX. Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J Exp Med. 2002;195(2):171–179.

    PubMed  CAS  Google Scholar 

  58. Wolf P, Nghiem DX, Walterscheid JP. et al. Platelet-activating factor is crucial in psoralen and ultraviolet A-induced immune suppression, inflammation, and apoptosis. Am J Pathol. 2006;169(3):795–805.

    PubMed  CAS  Google Scholar 

  59. Takashima A, Matsue H, Bergstresser PR, Ariizumi K. Interleukin-7-dependent interaction of dendritic epidermal T cells with keratinocytes. J Invest Dermatol. 1995;105(1 Suppl):50S–53S.

    PubMed  CAS  Google Scholar 

  60. Dalloul A, Arock M, Fourcade C, et al. Interleukin-7 is a growth factor for Sezary lymphoma cells. J Clin Invest. 1992;90(3):1054–1060.

    PubMed  CAS  Google Scholar 

  61. Bergfelt L. UV-related skin conditions and Langerhans’ cell populations in human skin. Acta Derm Venereol. 1993;73(3):194–196.

    PubMed  CAS  Google Scholar 

  62. Duthie MS, Kimber I, Norval M. The effects of ultraviolet radiation on the human immune system. Br J Dermatol. 1999;140(6):995–1009.

    PubMed  CAS  Google Scholar 

  63. Simon JC, Tigelaar RE, Bergstresser PR, Edelbaum D, Cruz PD Jr. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells:Induction of specific clonal anergy in CD4+ T helper 1 cells. J Immunol. 1991;146(2):485–491.

    PubMed  CAS  Google Scholar 

  64. Cox NH, Turbitt ML, Ashworth J, Mackie RM. Distribution of T cell subsets and Langerhans cells in mycosis fungoides, and the effect of PUVA therapy. Clin Exp Dermatol. 1986;11(6):564–568.

    PubMed  CAS  Google Scholar 

  65. Gasparro FP, Berger CL, Edelson RL. Effect of monochromatic UVA light and 8-methoxypsoralen on human lymphocyte response to mitogen. Photodermatol. 1984;1(1):10–17.

    PubMed  CAS  Google Scholar 

  66. Caffieri S, Di Lisa F, Bolesani F, et al. The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as a crucial mechanism in PUVA therapy. Blood. 2007;109(11):4988–4994.

    PubMed  CAS  Google Scholar 

  67. Godar DE. UVA1 radiation triggers two different final apoptotic pathways. J Invest Dermatol. 1999;112(1):3–12.

    PubMed  CAS  Google Scholar 

  68. de Gruijl FR. Photocarcinogenesis: UVA vs. UVB radiation. Skin Pharmacol Appl Skin Physiol. 2002;15(5):316–320.

    PubMed  CAS  Google Scholar 

  69. Stern RS, Laird N. The carcinogenic risk of treatments for severe psoriasis: Photochemotherapy Follow-up Study. Cancer. 1994;73(11):2759–2764.

    PubMed  CAS  Google Scholar 

  70. Stern RS, Bolshakov S, Nataraj AJ, Ananthaswamy HN. p53 mutation in nonmelanoma skin cancers occurring in psoralen ultraviolet a-treated patients: evidence for heterogeneity and field cancerization. J Invest Dermatol. 2002;119(2):522–526.

    PubMed  CAS  Google Scholar 

  71. Stern RS, Lunder EJ. Risk of squamous cell carcinoma and methoxsalen (psoralen) and UV-A radiation (PUVA): a meta-analysis. Arch Dermatol. 1998;134(12):1582–1585.

    PubMed  CAS  Google Scholar 

  72. Stern RS, Liebman EJ, Vakeva L. Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA Follow-up Study. J Natl Cancer Inst. 1998;90(17):1278–1284.

    PubMed  CAS  Google Scholar 

  73. Stern RS, Nichols KT, Vakeva LH. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA): the PUVA Follow-Up Study. N Engl J Med. 1997;336(15):1041–1045.

    PubMed  CAS  Google Scholar 

  74. Takashima A, Matsunami E, Yamamoto K, Kitajima S, Mizuno N. Cutaneous carcinoma and 8-methoxypsoralen and ultraviolet A (PUVA) lentigines in Japanese patients with psoriasis treated with topical PUVA: a follow-up study of 214 patients. Photodermatol Photoimmunol Photomed. 1990;7(5):218–221.

    PubMed  CAS  Google Scholar 

  75. Caffieri S. Furocoumarin photolysis: chemical and biological aspects. Photochem Photobiol Sci. 2002;1(3):149–157.

    PubMed  CAS  Google Scholar 

  76. British Photodermatology Group. British Photodermatology Group guidelines for PUVA. Br J Dermatol. 1994;130(2):246–255.

    Google Scholar 

  77. Wackernagel A, Hofer A, Legat F, Kerl H, Wolf P. Efficacy of 8-methoxypsoralen vs. 5-methoxypsoralen plus ultraviolet A therapy in patients with mycosis fungoides. Br J Dermatol. 2006;154(3):519–523.

    PubMed  CAS  Google Scholar 

  78. Herrmann JJ, Roenigk HH Jr, Hurria A, et al. Treatment of mycosis fungoides with photochemotherapy (PUVA): long-term follow-up. J Am Acad Dermatol. 1995;33(2 Pt 1):234–242.

    PubMed  CAS  Google Scholar 

  79. Roenigk HH Jr. Kuzel TM, Skoutelis AP, et al. Photochemotherapy alone or combined with interferon alpha-2a in the treatment of cutaneous T-cell lymphoma. J Invest Dermatol. 1990;95(6 Suppl):198S–205S.

    PubMed  Google Scholar 

  80. Querfeld C, Rosen ST, Kuzel TM, et al. Long-term follow-up of patients with early-stage cutaneous T-cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol. 2005;141(3):305–311.

    PubMed  Google Scholar 

  81. Hönigsmann H, Brenner W, Rauschmeier W, Konrad K, Wolff K. Photochemotherapy for cutaneous T cell lymphoma. A follow-up study. J Am Acad Dermatol. 1984;10(2 Pt 1):238–245.

    PubMed  Google Scholar 

  82. El-Mofty M, El-Darouty M, Salonas M, et al. Narrow band UVB (311 nm), psoralen UVB (311 nm) and PUVA therapy in the treatment of early-stage mycosis fungoides: a right-left comparative study. Photodermatol Photoimmunol Photomed. 2005;21(6):281–286.

    PubMed  CAS  Google Scholar 

  83. Tran D, Kwok YK, Goh CL. A retrospective review of PUVA therapy at the National Skin Centre of Singapore. Photodermatol Photoimmunol Photomed. 2001;17(4):164–167.

    PubMed  CAS  Google Scholar 

  84. Neuhaus IM, Ramos-Caro FA, Hassanein AM. Hypopigmented mycosis fungoides in childhood and adolescence. Pediatr Dermatol. 2000;17(5):403–406.

    PubMed  CAS  Google Scholar 

  85. Kim YH, Martinez G, Varghese A, Hoppe RT. Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol. 2003;139(2):165–173.

    PubMed  CAS  Google Scholar 

  86. Guitart J. Combination treatment modalities in cutaneous T-cell lymphoma (CTCL). Semin Oncol. 2006;33(1 Suppl 3):S17–S20.

    PubMed  CAS  Google Scholar 

  87. Kacinski BM, Flick M. Apoptosis and cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001;941:194–199.

    PubMed  CAS  Google Scholar 

  88. Dummer R. Immunomodulators in the treatment of cutaneous lymphomas. Expert Opin Biol Ther. 2002;2(3):279–286.

    PubMed  CAS  Google Scholar 

  89. Kuzel TM, Roenigk HH Jr, Samuelson E, et al. Effectiveness of interferon alfa-2a combined with phototherapy for mycosis fungoides and the Sezary syndrome. J Clin Oncol. 1995;13(1):257–263.

    PubMed  CAS  Google Scholar 

  90. Chiarion-Sileni V, Bononi A, Fornasa CV, et al. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light A in patients with cutaneous T-cell lymphoma. Cancer. 2002;95(3):569–575.

    PubMed  CAS  Google Scholar 

  91. Rupoli S, Goteri G, Pulini S, et al. Long-term experience with low-dose interferon-alpha and PUVA in the management of early mycosis fungoides. Eur J Haematol. 2005;75(2):136–145.

    PubMed  CAS  Google Scholar 

  92. Mostow EN, Neckel SL, Oberhelman L, Anderson TF, Cooper KD. Complete remissions in psoralen and UV-A (PUVA)-refractory mycosis fungoides-type cutaneous T-cell lymphoma with combined interferon alfa and PUVA. Arch Dermatol. 1993;129(6):747–752.

    PubMed  CAS  Google Scholar 

  93. Yamamoto T. Takahashi Y, Katayama I, Nishioka K. Alteration of cytokine genes and bcl-2 expression following immunotherapy with intralesional IFN-gamma in a patient with tumor-stage mycosis fungoides. Dermatology. 1998;196(3):283–287.

    PubMed  CAS  Google Scholar 

  94. Kaplan EH, Rosen ST, Norris DB, Roenigk HH Jr, Saks SR, Bunn PA Jr. Phase II study of recombinant human interferon gamma for treatment of cutaneous T-cell lymphoma. J Natl Cancer Inst. 1990;82(3):208–212.

    PubMed  CAS  Google Scholar 

  95. Olsen EA, Bunn PA. Interferon in the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9(5):1089–1097.

    PubMed  CAS  Google Scholar 

  96. Stadler R, Otte HG, Luger T, et al. Prospective randomized multicenter clinical trial on the use of interferon-2a plus acitretin versus interferon-2a plus PUVA in patients with cutaneous T-cell lymphoma stages I and II. Blood. 1998;92(10):3578–3581.

    PubMed  CAS  Google Scholar 

  97. Thomsen K, Hammar H, Molin L, Volden G. Retinoids plus PUVA (RePUVA) and PUVA in mycosis fungoides, plaque stage. A report from the Scandinavian Mycosis Fungoides Group. Acta Derm Venereol. 1989;69(6):536–538.

    PubMed  CAS  Google Scholar 

  98. Whittaker SJ, Foss FM. Efficacy and tolerability of currently available therapies for the mycosis fungoides and Sezary syndrome variants of cutaneous T-cell lymphoma. Cancer Treat Rev. 2007;33(2):146–160.

    PubMed  CAS  Google Scholar 

  99. Zhang C, Hazarika P, Ni X, Weidner DA, Duvic M. Induction of apoptosis by bexarotene in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. Clin Cancer Res. 2002;8(5):1234–1240.

    PubMed  CAS  Google Scholar 

  100. Talpur R, Ward S, Apisarnthanarax N, Breuer-Mcham J, Duvic M. Optimizing bexarotene therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol. 2002;47(5):672–684.

    PubMed  Google Scholar 

  101. Singh F, Lebwohl MG. Cutaneous T-cell lymphoma treatment using bexarotene and PUVA: a case series. J Am Acad Dermatol. 2004;51(4):570–573.

    PubMed  Google Scholar 

  102. Stern DK, Lebwohl M. Treatment of mycosis fungoides with oral bexarotene combined with PUVA. J Drugs Dermatol. 2002;1(2):134–136.

    PubMed  Google Scholar 

  103. Papadavid E, Antoniou C, Nikolaou V, et al. Safety and efficacy of low-dose bexarotene and PUVA in the treatment of patients with mycosis fungoides. Am J Clin Dermatol. 2008;9(3):169–173.

    PubMed  Google Scholar 

  104. McGinnis KS, Shapiro M, Vittorio CC, Rook AH, Junkins-Hopkins JM. Psoralen plus long-wave UV-A (PUVA) and bexarotene therapy: an effective and synergistic combined adjunct to therapy for patients with advanced cutaneous T-cell lymphoma. Arch Dermatol. 2003;139(6):771–775.

    PubMed  Google Scholar 

  105. Abel EA, Sendagorta E, Hoppe RT, Hu CH. PUVA treatment of erythrodermic and plaque-type mycosis fungoides. Ten-year follow-up study. Arch Dermatol. 1987;123(7):897–901.

    PubMed  CAS  Google Scholar 

  106. Zane C, Leali C, Airò P, De Panfilis G, Pinton PC. “High-dose” UVA1 therapy of widespread plaque-type, nodular, and erythrodermic mycosis fungoides. J Am Acad Dermatol. 2001;44(4):629–633.

    PubMed  CAS  Google Scholar 

  107. Rombold S, Lobisch K, Katzer K, Grazziotin TC, Ring J, Eberlein B. Efficacy of UVA1 phototherapy in 230 patients with various skin diseases. Photodermatol Photoimmunol Photomed. 2008;24(1):19–23.

    PubMed  CAS  Google Scholar 

  108. Roupe G. Hypopigmented mycosis fungoides in a child successfully treated with UVA1-light. Pediatr Dermatol. 2005;22(1):82.

    PubMed  Google Scholar 

  109. Dawe RS. Ultraviolet A1 phototherapy. Br J Dermatol. 2003;148(4):626–637.

    PubMed  CAS  Google Scholar 

  110. Edelson R, Berger C, Gasparro F, et al. Treatment of cutaneous T-cell lymphoma by extracorporeal photochemotherapy. Preliminary results. N Engl J Med. 1987;316(6):297–303.

    PubMed  CAS  Google Scholar 

  111. Knobler E, Warmuth I, Cocco C, Miller B, Mackay J. Extracorporeal photochemotherapy – the Columbia Presbyterian experience. Photodermatol Photoimmunol Photomed. 2002;18(5):232–237.

    PubMed  Google Scholar 

  112. Suchin KR, Junkins-Hopkins JM, Rook AH. Treatment of cutaneous T-cell lymphoma with combined immunomodulatory therapy: a 14-year experience at a single institution. Arch Dermatol. 2002;138(8):1054–1060.

    PubMed  Google Scholar 

  113. Miller JD, Kirkland EB, Domingo DS, et al. Review of extracorporeal photopheresis in early-stage (IA, IB, and IIA) cutaneous T-cell lymphoma. Photodermatol Photoimmunol Photomed. 2007;23(5):163–171.

    PubMed  Google Scholar 

  114. Duvic M, Hester JP, Lemak NA. Photopheresis therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol. 1996;35(4):573–579.

    PubMed  CAS  Google Scholar 

  115. Rook AH, Suchin KR, Kao DM, et al. Photopheresis: clinical applications and mechanism of action. J Investig Dermatol Symp Proc. 1999;4(1):85–90.

    PubMed  CAS  Google Scholar 

  116. Morita A, Werfel T, Stege H, Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J Exp Med, 1997;186(10):1763–1768.

    PubMed  CAS  Google Scholar 

  117. Aringer M, Graninger WB, Smolen JS, et al. Photopheresis treatment enhances CD95 (fas) expression in circulating lymphocytes of patients with systemic sclerosis and induces apoptosis. Br J Rheumatol. 1997;36(12):1276–1282.

    PubMed  CAS  Google Scholar 

  118. Di Renzo M, Rubegni P, Sbano P, et al. ECP-treated lymphocytes of chronic graft-versus-host disease patients undergo apoptosis which involves both the Fas/FasL system and the Bcl-2 protein family. Arch Dermatol Res. 2003;295(5):175–182.

    PubMed  CAS  Google Scholar 

  119. Bladon J, Taylor PC. Treatment of cutaneous T cell lymphoma with extracorporeal photopheresis induces Fas-ligand expression on treated T cells, but does not suppress the expression of co-stimulatory molecules on monocytes. J Photochem Photobiol B. 2003;69(2):129–138.

    PubMed  CAS  Google Scholar 

  120. Tambur AR, Ortegel JW, Morales A, Klingemann H, Gebel HM, Tharp MD. Extracorporeal photopheresis induces lymphocyte but not monocyte apoptosis. Transplant Proc. 2000;32(4):747–748.

    PubMed  CAS  Google Scholar 

  121. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J. 1997;16(10):2794–2804.

    PubMed  CAS  Google Scholar 

  122. Bladon J, Taylor PC. Lymphocytes treated by extracorporeal photopheresis demonstrate a drop in the Bcl-2/Bax ratio: a possible mechanism involved in extracorporeal-photopheresis-induced apoptosis. Dermatology. 2002;204(2):104–107.

    PubMed  CAS  Google Scholar 

  123. Morison WL, Parrish JA, McAuliffe DJ, Bloch KJ. Sensitivity of mononuclear cells to PUVA: effect on subsequent stimulation with mitogens and on exclusion of trypan blue dye. Clin Exp Dermatol. 1981;6(3):273–277.

    PubMed  CAS  Google Scholar 

  124. Gerber A, Bohne M, Rasch J, Struy H, Ansorge S, Gollnick H. Investigation of annexin V binding to lymphocytes after extracorporeal photoimmunotherapy as an early marker of apoptosis. Dermatology. 2000;201(2):111–117.

    PubMed  CAS  Google Scholar 

  125. Maeda A, Schwarz A, Kernebeck K, et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J Immunol. 2005;174(10):5968–5976.

    PubMed  CAS  Google Scholar 

  126. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem. 2001;276(2):1071–1077.

    PubMed  CAS  Google Scholar 

  127. Hanlon DJ, Berger CL, Edelson RL. Photoactivated 8-methoxypsoralen treatment causes a peptide-dependent increase in antigen display by transformed lymphocytes. Int J Cancer. 1998;78(1):70–75.

    PubMed  CAS  Google Scholar 

  128. Moor AC, Schmitt IM, Beijersbergen van Henegouwen GM, Chimenti S, Edelson RL, Gasparro FP. Treatment with 8-MOP and UVA enhances MHC class I synthesis in RMA cells: preliminary results. J Photochem Photobiol B. 1995;29(2-3): p. 193–198.

    PubMed  CAS  Google Scholar 

  129. Skoberne M, Beignon AS, Larsson M, Bhardwaj N. Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol. 2005;289:259–292.

    PubMed  CAS  Google Scholar 

  130. Verhoven B, Krahling S, Schlegel RA, Williamson P. Regulation of phosphatidylserine exposure and phagocytosis of apoptotic T lymphocytes. Cell Death Differ. 1999;6(3):262–270.

    PubMed  CAS  Google Scholar 

  131. Berger CL, Xu AL, Hanlon D, et al. Induction of human tumor-loaded dendritic cells. Int J Cancer. 2001;91(4):438–447.

    PubMed  CAS  Google Scholar 

  132. Bladon J, Taylor PC. Extracorporeal photopheresis: a focus on apoptosis and cytokines. J Dermatol Sci. 2006;43(2):85–94.

    PubMed  CAS  Google Scholar 

  133. Di Renzo M, Rubegni P, De Aloe G, et al. Extracorporeal photochemotherapy restores Th1/Th2 imbalance in patients with early stage cutaneous T-cell lymphoma. Immunology. 1997;92(1):99–103.

    PubMed  CAS  Google Scholar 

  134. Rook AH, et al. IL-12 reverses cytokine and immune abnormalities in Sezary syndrome. J Immunol. 1995;154(3):1491–1498.

    PubMed  CAS  Google Scholar 

  135. Rook AH, Wood GS, Yoo EK, et al. Interleukin-12 therapy of cutaneous T-cell lymphoma induces lesion regression and cytotoxic T-cell responses. Blood. 1999;94(3):902–908.

    PubMed  CAS  Google Scholar 

  136. Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42(8):1014–1030.

    PubMed  Google Scholar 

  137. Whittaker SJ, Marsden JR, Spittle M, et al. Joint British Association of Dermatologists and U.K. Cutaneous Lymphoma Group guidelines for the management of primary cutaneous T-cell lymphomas. Br J Dermatol. 2003;149(6):1095–1107.

    PubMed  CAS  Google Scholar 

  138. Zic JA. The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther. 2003;16(4):337–346.

    PubMed  Google Scholar 

  139. Demierre MF, Kim YH, Zackheim HS. Prognosis, clinical outcomes and quality of life issues in cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 2003;17(6):1485–1507.

    PubMed  Google Scholar 

  140. Zic JA, Stricklin GP, Greer JP, et al. Long-term follow-up of patients with cutaneous T-cell lymphoma treated with extracorporeal photochemotherapy. J Am Acad Dermatol. 1996;35(6):935–945.

    PubMed  CAS  Google Scholar 

  141. Duvic M, Chiao N, Talpur R. Extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma. J Cutan Med Surg. 2003;7(4 Suppl):3–7.

    PubMed  Google Scholar 

  142. Gottlieb SL, Wolfe JT, Fox FE, et al. Treatment of cutaneous T-cell lymphoma with extracorporeal photopheresis monotherapy and in combination with recombinant interferon alfa: a 10-year experience at a single institution. J Am Acad Dermatol. 1996;35(6):946–957.

    PubMed  CAS  Google Scholar 

  143. Lim HW, Edelson RL. Photopheresis for the treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9(5):1117–1126.

    PubMed  CAS  Google Scholar 

  144. Suchin KR, Cassin M, Washko R, et al. Extracorporeal photochemotherapy does not suppress T- or B-cell responses to novel or recall antigens. J Am Acad Dermatol. 1999;41(6):980–986.

    PubMed  CAS  Google Scholar 

  145. Geskin L. ECP versus PUVA for the treatment of cutaneous T-cell lymphoma. Skin Therapy Lett. 2007;12(5):1–4.

    PubMed  CAS  Google Scholar 

  146. Knobler R, Jantschitsch C. Extracorporeal photochemoimmunotherapy in cutaneous T-cell lymphoma. Transfus Apher Sci. 2003;28(1):81–89.

    PubMed  CAS  Google Scholar 

  147. Jiang SB, Dietz SB, Kim M, Lim HW. Extracorporeal photochemotherapy for cutaneous T-cell lymphoma: a 9.7-year experience. Photodermatol Photoimmunol Photomed. 1999;15(5):161–165.

    PubMed  CAS  Google Scholar 

  148. Scarisbrick JJ, Taylor P, Holtick U, et al. U.K. consensus statement on the use of extracorporeal photopheresis for treatment of cutaneous T-cell lymphoma and chronic graft-versus-host disease. Br J Dermatol. 2008;158(4):659–678.

    PubMed  CAS  Google Scholar 

  149. Vonderheid EC, Zhang Q, Lessin SR, et al. Use of serum soluble interleukin-2 receptor levels to monitor the progression of cutaneous T-cell lymphoma. J Am Acad Dermatol. 1998;38(2 Pt 1):207–220.

    PubMed  CAS  Google Scholar 

  150. Heald P, Rook A, Perez M, et al. Treatment of erythrodermic cutaneous T-cell lymphoma with extracorporeal photochemotherapy. J Am Acad Dermatol. 1992;27(3):427–433.

    PubMed  CAS  Google Scholar 

  151. Stevens SR, Ke MS, Parry EJ, Mark J, Cooper KD. Quantifying skin disease burden in mycosis fungoides-type cutaneous T-cell lymphomas: the severity-weighted assessment tool (SWAT). Arch Dermatol. 2002;138(1):42–48.

    PubMed  Google Scholar 

  152. Ferenczi K, Yawalkar N, Jones D, Kupper TS. Monitoring the decrease of circulating malignant T cells in cutaneous T-cell lymphoma during photopheresis and interferon therapy. Arch Dermatol. 2003;139(7):909–913.

    PubMed  Google Scholar 

  153. McGinnis KS, Ubriani R, Newton S, et al. The addition of interferon gamma to oral bexarotene therapy with photopheresis for Sezary syndrome. Arch Dermatol. 2005;141(9):1176–1178.

    PubMed  Google Scholar 

  154. Quaglino P, Fierro MT, Rossotto GL, Savoia P, Bernengo MG. Treatment of advanced mycosis fungoides/Sezary syndrome with fludarabine and potential adjunctive benefit to subsequent extracorporeal photochemotherapy. Br J Dermatol. 2004;150(2):327–336.

    PubMed  CAS  Google Scholar 

  155. Wilson LD, Jones GW, Kim D, et al. Experience with total skin electron beam therapy in combination with extracorporeal photopheresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol. 2000;43(1 Pt 1):54–60.

    PubMed  CAS  Google Scholar 

  156. Tippel H, Engst R. Mycosis fungoides. Results of helioclimate therapy in high mountains (Davos, 1,560). Hautarzt. 1986;37(8):450–453.

    PubMed  CAS  Google Scholar 

  157. Ramsay DL, Lish KM, Yalowitz CB, Soter NA. Ultraviolet-B phototherapy for early-stage cutaneous T-cell lymphoma. Arch Dermatol. 1992;128(7):931–933.

    PubMed  CAS  Google Scholar 

  158. Abe M, Ohnishi K, Kan C, Ishikawa O. Ultraviolet-B phototherapy is successful in Japanese patients with early-stage mycosis fungoides. J Dermatol. 2003;30(11):789–796.

    PubMed  Google Scholar 

  159. Resnik KS, Vonderheid EC. Home UV phototherapy of early mycosis fungoides: long-term follow-up observations in thirty-one patients. J Am Acad Dermatol. 1993;29(1):73–77.

    PubMed  CAS  Google Scholar 

  160. el-Ghorr AA, Norval M. The effect of chronic treatment of mice with urocanic acid isomers. Photochem Photobiol. 1997;65(5):866–872.

    PubMed  CAS  Google Scholar 

  161. Ozawa M, Ferenczi K, Kikuchi T, et al. 312-Nanometer ultraviolet B light (narrow-band UVB) induces apoptosis of T cells within psoriatic lesions. J Exp Med. 1999;189(4):711–718.

    PubMed  CAS  Google Scholar 

  162. Clark C, Dawe RS, Evans AT, Lowe G, Ferguson J. Narrowband TL-01 phototherapy for patch-stage mycosis fungoides. Arch Dermatol. 2000;136(6):748–752.

    PubMed  CAS  Google Scholar 

  163. Pavlotsky F, Barzilai A, Kasem R, Shpiro D, Trau H. UVB in the management of early stage mycosis fungoides. J Eur Acad Dermatol Venereol. 2006;20(5):565–572.

    PubMed  CAS  Google Scholar 

  164. Diederen PV, van Weelden H, Sanders CJ, Toonstra J, van Vloten WA. Narrowband UVB and psoralen-UVA in the treatment of early-stage mycosis fungoides: a retrospective study. J Am Acad Dermatol. 2003;48(2):215–219.

    PubMed  Google Scholar 

  165. Hofer A, Cerroni L, Kerl H, Wolf P. Narrowband (311-nm) UV-B therapy for small plaque parapsoriasis and early-stage mycosis fungoides. Arch Dermatol. 1999;135(11):1377–1380.

    PubMed  CAS  Google Scholar 

  166. Gökdemir G, Barutcuoglu B, Sakiz D, Köşlü A. Narrowband UVB phototherapy for early-stage mycosis fungoides: evaluation of clinical and histopathological changes. J Eur Acad Dermatol Venereol. 2006;20(7):804–809.

    PubMed  Google Scholar 

  167. Gathers RC, Scherschun L, Malick F, Fivenson DP, Lim HW. Narrowband UVB phototherapy for early-stage mycosis fungoides. J Am Acad Dermatol. 2002;47(2):191–197.

    PubMed  Google Scholar 

  168. Brazzelli V, Antoninetti M, Palazzini S, Prestinari F, Borroni G. Narrow-band ultraviolet therapy in early-stage mycosis fungoides: study on 20 patients. Photodermatol Photoimmunol Photomed. 2007;23(6):229–233.

    PubMed  CAS  Google Scholar 

  169. Matsuoka Y, Yoneda K, Katsuura J, et al. Successful treatment of follicular cutaneous T-cell lymphoma without mucinosis with narrow-band UVB irradiation. J Eur Acad Dermatol Venereol., 2007;. 21(8): p. 1121-1122.

    PubMed  CAS  Google Scholar 

  170. Ferahbas A, Utas S, Ulas Y, Kontas O, Karakukcu M, Arseven V. Narrow band UVB treatment for a child with mycosis fungoides. Pediatr Dermatol. 2006;23(3):302–303.

    PubMed  Google Scholar 

  171. Man I, Crombie IK, Dawe RS, Ibbotson SH, Ferguson J. The photocarcinogenic risk of narrowband UVB (TL-01) phototherapy: early follow-up data. Br J Dermatol. 2005;152(4):755–757.

    PubMed  CAS  Google Scholar 

  172. Sakuntabhai A, Diffey BL, Farr PM. Response of psoriasis to psoralen-UVB photochemotherapy. Br J Dermatol. 1993;128(3):296–300.

    PubMed  CAS  Google Scholar 

  173. Lokitz ML, Wong HK. Bexarotene and narrowband ultraviolet B phototherapy combination treatment for mycosis fungoides. Photodermatol Photoimmunol Photomed. 2007;23(6):255–257.

    PubMed  CAS  Google Scholar 

  174. Shimauchi T, Sugita K, Nishio D, et al. Alterations of serum Th1 and Th2 chemokines by combination therapy of interferon-gamma and narrowband UVB in patients with mycosis fungoides. J Dermatol Sci. 2008;50(3):217–225.

    PubMed  CAS  Google Scholar 

  175. Novak Z, Bónis B, Baltás E, et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J Photochem Photobiol B. 2002;67(1):32–38.

    PubMed  CAS  Google Scholar 

  176. Mori M, Campolmi P, Mavilia L, Rossi R, Cappugi P, Pimpinelli N. Monochromatic excimer light (308 nm) in patch-stage IA mycosis fungoides. J Am Acad Dermatol. 2004;50(6):943–945.

    PubMed  Google Scholar 

  177. Nistico S, Costanzo A, Saraceno R, Chimenti S. Efficacy of monochromatic excimer laser radiation (308 nm) in the treatment of early stage mycosis fungoides. Br J Dermatol. 2004;151(4):877–879.

    PubMed  CAS  Google Scholar 

  178. Passeron T, Zakaria W, Ostovari N, et al. Efficacy of the 308-nm excimer laser in the treatment of mycosis fungoides. Arch Dermatol. 2004;140(10):1291–1293.

    PubMed  Google Scholar 

  179. Kontos AP, Kerr HA, Malick F, Fivenson DP, Lim HW, Wong HK. 308-nm excimer laser for the treatment of lymphomatoid papulosis and stage IA mycosis fungoides. Photodermatol Photoimmunol Photomed. 2006;22(3):168–171.

    PubMed  Google Scholar 

  180. Meisenheimer JL. Novel use of 308-nm excimer laser to treat a primary cutaneous CD30+ lymphoproliferative nodule. J Drugs Dermatol. 2007;6(4):440–442.

    PubMed  Google Scholar 

  181. Boehncke WH, König K, Rück A, Kaufmann R, Sterry W. In vitro and in vivo effects of photodynamic therapy in cutaneous T cell lymphoma. Acta Derm Venereol. 1994;74(3):201–205.

    PubMed  CAS  Google Scholar 

  182. Zane C, Venturini M, Sala R, Calzavara-Pinton P. Photodynamic therapy with methylaminolevulinate as a valuable treatment option for unilesional cutaneous T-cell lymphoma. Photodermatol Photoimmunol Photomed. 2006;22(5):254–258.

    PubMed  Google Scholar 

  183. Coors EA, von den Driesch P. Topical photodynamic therapy for patients with therapy-resistant lesions of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2004;50(3):363–367.

    PubMed  Google Scholar 

  184. Markham T, Sheahan K, Collins P. Topical 5-aminolaevulinic acid photodynamic therapy for tumour-stage mycosis fungoides. Br J Dermatol. 2001;144(6):1262–1263.

    PubMed  CAS  Google Scholar 

  185. Edstrom DW, Porwit A, Ros AM. Photodynamic therapy with topical 5-aminolevulinic acid for mycosis fungoides: clinical and histological response. Acta Derm Venereol. 2001;81(3):184–188.

    PubMed  CAS  Google Scholar 

  186. Miller JD, Baron ED, Scull H, et al. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical-translational studies. Toxicol Appl Pharmacol. 2007;224(3):290–299.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Ferenczi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ferenczi, K., Baron, E.D. (2009). Light Therapies for Cutaneous T-Cell Lymphoma. In: Baron, E. (eds) Light-Based Therapies for Skin of Color. Springer, London. https://doi.org/10.1007/978-1-84882-328-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-328-0_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-327-3

  • Online ISBN: 978-1-84882-328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics