Skip to main content

Endogenous Protection by Melanin

  • Chapter
  • First Online:
Light-Based Therapies for Skin of Color
  • 899 Accesses

Abstract

Melanin is the dominant skin pigment, and the intensity of pigmentation is a conspicuous component of distinction between racially different human populations. Humans evolved in sub tropical Africa and constitutive pigmentation was likely dark to protect from damage by intense sun exposure, a persistent feature of highly melanized skin.1,2 When descendants of these early humans moved north, dark skinned people were at a disadvantage for vitamin D (ViD) conversion and thus paler skinned descendants had a selective advantage in moderate climates and far northern latitudes. At the same time, the loss of dark pigment made these fair skinned people more prone to acute and chronic adverse effects of sun exposure, such as sunburn and skin cancer.3 This chapter discusses the endogenous protection that epidermal pigment provides to humans. The sole source of cutaneous melanin are melanocytes that reside in the epidermis. They provide the surrounding keratinocytes with melanosomes, specialized organelles that contain melanins. Darkness and hue of constitutive pigmentation are not due to different densities of melanocytes but rather caused by differences in size and distribution of melanosomes, the overall melanin content of the epidermis and the relative amounts of eumelanin and pheomelanin. Although there is no doubt that melanin is protective from environmental ultraviolet (UV) exposure, the mechanisms by which this happens are not completely clarified. In addition to constitutive differences, multiple exogenous and endogenous agents modulate melanin pigmentation. This chapter will focus primarily on those changes that are induced by UV radiation (UVR). However, as will become evident, this approach does not lead to exclusion but rather to the inclusion of other factors that regulate epidermal melanization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol. 2006;Suppl 43:89–130.

    PubMed  Google Scholar 

  2. Lao O, de Gruijwwter JM, van Duijn K, Navarro A, Kayser M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann Hum Genet. 2007;71:354–369.

    PubMed  CAS  Google Scholar 

  3. Briollais L, Chompret A, Guilloud-Bataille M, Bressac-de Paillerets B, Avril MF, Demenais F. Patterns of familial aggregation of three melanoma risk factors: great number of naevi, light phototype and high degree of sun exposure. Int J Epidemiol. 2000;29:408–415.

    PubMed  CAS  Google Scholar 

  4. Westerhof W. The discovery of the human melanocyte. Pigment Cell Res. 2006;19:183–193.

    PubMed  Google Scholar 

  5. Passeron T, Mantoux F, Ortonne JP. Genetic disorders of pigmentation. Clin Dermatol. 2005;23:56–67.

    PubMed  Google Scholar 

  6. Raposo G, Marks MS. Melanosomes–dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol. 2007;8:786–797.

    PubMed  CAS  Google Scholar 

  7. Bennett DC, Lamoreux ML. The color loci of mice–a genetic century. Pigment Cell Res. 2003;16:333–344.

    PubMed  CAS  Google Scholar 

  8. Steingrimsson E, Copeland NG, Jenkins NA. Mouse coat color mutations: from fancy mice to functional genomics. Dev Dyn. 2006;235:2401–2411.

    PubMed  Google Scholar 

  9. Holbrook KA, Underwood RA, Vogel AM, Gown AM, Kimball H. The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat Embryol (Berl). 1989;180:443–455.

    CAS  Google Scholar 

  10. Lang D, Brown CB, Epstein JA. Neural crest formation and craniofacial development. In: Epstein C, Erickson R, Wynshaw-Boris A, eds. Molecular Basis of Inborn Errors of Development. San Francisco, CA: Oxford University Press; 2004:67–74.

    Google Scholar 

  11. Bondurand N, Pingault V, Goerich DE, et al. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 2000;9:1907–1917.

    PubMed  CAS  Google Scholar 

  12. Hornyak TJ, Hayes DJ, Chiu LY, Ziff EB. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf. Mech Dev. 2001;101:47–59.

    PubMed  CAS  Google Scholar 

  13. Potterf SB, Furumura M, Dunn KJ, Arnheiter H, Pavan WJ. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3. Hum Genet. 2000;107:1–6.

    PubMed  CAS  Google Scholar 

  14. Widlund HR, Fisher DE. Microphthalmia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene. 2003;22:3035–3041.

    PubMed  CAS  Google Scholar 

  15. Tassabehji M, Newton VE, Read AP. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat Genet. 1994;8:251–255.

    PubMed  CAS  Google Scholar 

  16. Wehrle-Haller B. The role of Kit-ligand in melanocyte development and epidermal homeostasis. Pigment Cell Res. 2003;16:287–296.

    PubMed  CAS  Google Scholar 

  17. Toki F, Suzuki N, Inoue K, et al. Intestinal aganglionosis associated with the Waardenburg syndrome: report of two cases and review of the literature. Pediatr Surg Int. 2003;19:725–728.

    PubMed  Google Scholar 

  18. Tomita Y, Suzuki T. Genetics of pigmentary disorders. Am J Med Genet C Semin Med Genet. 2004;131C:75–81.

    PubMed  Google Scholar 

  19. Nordlund JJ. The melanocyte and the epidermal melanin unit: an expanded concept. Dermatol Clin. 2007;25:271–281,vii.

    PubMed  CAS  Google Scholar 

  20. Marks MS, Seabra MC. The melanosome: membrane dynamics in black and white. Nat Rev Mol Cell Biol. 2001;2:738–748.

    PubMed  CAS  Google Scholar 

  21. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–1228.

    PubMed  CAS  Google Scholar 

  22. Kushimoto T, Basrur V, Valencia J, et al. A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci U S A. 2001;98:10698–10703.

    PubMed  CAS  Google Scholar 

  23. Alaluf S, Heath A, Carter N, et al. Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res. 2001;14:337–347.

    PubMed  CAS  Google Scholar 

  24. Theos AC, Truschel ST, Raposo G, Marks MS. The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res. 2005;18:322–336.

    PubMed  CAS  Google Scholar 

  25. Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res. 2006;19:19–42.

    PubMed  CAS  Google Scholar 

  26. Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol. 2008;15:22–29.

    PubMed  CAS  Google Scholar 

  27. Ito S. The IFPCS presidential lecture: a chemist’s view of melanogenesis. Pigment Cell Res. 2003;16:230–236.

    PubMed  CAS  Google Scholar 

  28. del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 1996;381:165–168.

    PubMed  CAS  Google Scholar 

  29. Smit N, Tilgmann C, Karhunen T, et al. O-methylation of L-DOPA in melanin metabolism and the presence of catechol-O-methyltransferase in melanocytes. Pigment Cell Res. 1994;7:403–408.

    PubMed  CAS  Google Scholar 

  30. Lee ZH, Hou L, Moellmann G, et al. Characterization and subcellular localization of human Pmel 17/silver, a 110-kDa (pre)melanosomal membrane protein associated with 5,6,­-dihydroxyindole-2-carboxylic acid (DHICA) converting activity. J Invest Dermatol. 1996;106:605–610.

    PubMed  CAS  Google Scholar 

  31. Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis–controversies and new concepts. Exp Dermatol. 2008;17:395–404.

    PubMed  CAS  Google Scholar 

  32. Ito S. Reexamination of the structure of eumelanin. Biochim Biophys Acta. 1986;883:155–161.

    PubMed  CAS  Google Scholar 

  33. Zajac GW, Gallas JM, Cheng J, Eisner M, Moss SC, Alvarado-Swaisgood AE. The fundamental unit of synthetic melanin: a verification by tunneling microscopy of X-ray scattering results. Biochim Biophys Acta. 1994;1199:271–278.

    PubMed  CAS  Google Scholar 

  34. Clancy CM, Simon JD. Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy. Biochemistry. 2001;40:13353–13360.

    PubMed  CAS  Google Scholar 

  35. Meng S, Kaxiras E. Theoretical models of eumelanin protomolecules and their optical properties. Biophys J. 2008;94:2095–2105.

    PubMed  CAS  Google Scholar 

  36. Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002;15:112–118.

    PubMed  CAS  Google Scholar 

  37. del Marmol V, Ito S, Bouchard B, et al. Cysteine deprivation promotes eumelanogenesis in human melanoma cells. J Invest Dermatol. 1996;107:698–702.

    PubMed  CAS  Google Scholar 

  38. Okulicz JF, Shah RS, Schwartz RA, Janniger CK. Oculocutaneous albinism. J Eur Acad Dermatol Venereol. 2003;17:251–256.

    PubMed  CAS  Google Scholar 

  39. Menasche G, Ho CH, Sanal O, et al. Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest. 2003;112:450–456.

    PubMed  CAS  Google Scholar 

  40. Corbeel L, Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur J Pediatr. 2008;167:723–729.

    PubMed  CAS  Google Scholar 

  41. Wolff K, Konrad K. Phagocytosis of latex beads by epidermal keratinocytes in vivo. J Ultrastruct Res. 1972;39:262–280.

    PubMed  CAS  Google Scholar 

  42. Cardinali G, Ceccarelli S, Kovacs D, et al. Keratinocyte growth factor promotes melanosome transfer to keratinocytes. J Invest Dermatol. 2005;125:1190–1199.

    PubMed  CAS  Google Scholar 

  43. Boissy RE. Melanosome transfer to and translocation in the keratinocyte. Exp Dermatol. 2003;12(Suppl 2):5–12.

    PubMed  Google Scholar 

  44. Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M. The protease-2 upregulates keratinocyte phagocytosis. J Cell Sci. 2000;113(Pt 17):3093–3101.

    PubMed  CAS  Google Scholar 

  45. Virador VM, Muller J, Wu X, et al. Influence of alpha-melanocyte-stimulating hormone and ultraviolet radiation on the transfer of melanosomes to keratinocytes. Faseb J. 2002;16:105–107.

    PubMed  CAS  Google Scholar 

  46. Wolff K. Melanocyte-keratinocyte interactions in vivo: the fate of melanosomes. Yale J Biol Med. 1973;46:384–396.

    PubMed  CAS  Google Scholar 

  47. Otaki N, Seiji M. Degradation of melanosomes by lysosomes. J Invest Dermatol. 1971;57:1–5.

    PubMed  CAS  Google Scholar 

  48. Hori Y, Toda K, Pathak MA, Clark WHJr., Fitzpatrick TB. A fine-structure study of the human epidermal melanosome complex and its acid phosphatase activity. J Ultrastruct Res. 1968;25:109–120.

    PubMed  CAS  Google Scholar 

  49. Borovansky J, Elleder M. Melanosome degradation: fact or fiction. Pigment Cell Res. 2003;16:280–286.

    PubMed  CAS  Google Scholar 

  50. Honigsmann H. Erythema and pigmentation. Photodermatol Photoimmunol Photomed. 2002;18:75–81.

    PubMed  Google Scholar 

  51. Cripps DJ. Natural and artificial photoprotection. J Invest Dermatol. 1981;77:154–157.

    PubMed  CAS  Google Scholar 

  52. Westerhof W, Estevez-Uscanga O, Meens J, Kammeyer A, Durocq M, Cario I. The relation between constitutional skin color and photosensitivity estimated from UV-induced erythema and pigmentation dose-response curves. J Invest Dermatol. 1990;94:812–816.

    PubMed  CAS  Google Scholar 

  53. Andreassi L, Simoni S, Fiorini P, Fimiani M. Phenotypic characters related to skin type and minimal erythemal dose. Photodermatol. 1987;4:43–46.

    PubMed  CAS  Google Scholar 

  54. Gange RW, Blackett AD, Matzinger EA, Sutherland BM, Kochevar IE. Comparative protection efficiency of UVA- and UVB-induced tans against erythema and formation of endonuclease-sensitive sites in DNA by UVB in human skin. J Invest Dermatol. 1985;85:362–364.

    PubMed  CAS  Google Scholar 

  55. Sheehan JM, Potten CS, Young AR. Tanning in human skin types II and III offers modest photoprotection against erythema. Photochem Photobiol. 1998;68:588–592.

    PubMed  CAS  Google Scholar 

  56. Barnetson RS, Ooi TK, Zhuang L, et al. [Nle4-D-Phe7]-alpha-melanocyte-stimulating hormone significantly increased pigmentation and decreased UV damage in fair-skinned Caucasian volunteers. J Invest Dermatol. 2006;126:1869–1878.

    PubMed  CAS  Google Scholar 

  57. D’Orazio JA, Nobuhisa T, Cui R, et al. Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature. 2006;443:340–344.

    PubMed  Google Scholar 

  58. Yamaguchi Y, Takahashi K, Zmudzka BZ, et al. Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis. Faseb J. 2006;20:1486–1488.

    PubMed  CAS  Google Scholar 

  59. Takeuchi S, Zhang W, Wakamatsu K, et al. Melanin acts as a potent UVB photosensi-tizer to cause an atypical mode of cell death in murine skin. Proc Natl Acad Sci U S A. 2004;101:15076–15081.

    PubMed  CAS  Google Scholar 

  60. Munyao TM, Othieno-Abinya NA. Cutaneous basal cell carcinoma in Kenya. East Afr Med J. 1999;76:97–100.

    PubMed  CAS  Google Scholar 

  61. Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9:135–160.

    PubMed  CAS  Google Scholar 

  62. Kromberg JG, Castle D, Zwane EM, Jenkins T. Albinism and skin cancer in Southern Africa. Clin Genet. 1989;36:43–52.

    PubMed  CAS  Google Scholar 

  63. Staples MP, Elwood M, Burton RC, Williams JL, Marks R, Giles GG. Non-melanoma skin cancer in Australia: the 2002 national survey and trends since 1985. Med J Aust. 2006;184:6–10.

    PubMed  Google Scholar 

  64. Cunningham J, Rumbold AR, Zhang X, Condon JR. Incidence, aetiology, and outcomes of cancer in Indigenous peoples in Australia. Lancet Oncol. 2008;9:585–595.

    PubMed  Google Scholar 

  65. Condon JR, Armstrong BK, Barnes T, Zhao Y. Cancer incidence and survival for indigenous Australians in the Northern Territory. Aust N Z J Public Health. 2005;29:123–128.

    PubMed  Google Scholar 

  66. Wlaschek M, Tantcheva-Poor I, Naderi L, et al. Solar UV irradiation and dermal photoaging. J Photochem Photobiol B. 2001;63:41–51.

    PubMed  CAS  Google Scholar 

  67. Holick MF. The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol. 1981;77:51–58.

    PubMed  CAS  Google Scholar 

  68. Giovannucci E, Liu Y, Hollis BW, Rimm EB. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168:1174–1180.

    PubMed  CAS  Google Scholar 

  69. Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006;98:451–459.

    PubMed  CAS  Google Scholar 

  70. Young AR. Chromophores in human skin. Phys Med Biol. 1997;42:789–802.

    PubMed  CAS  Google Scholar 

  71. Riesz J, Gilmore J, Meredith P. Quantitative scattering of melanin solutions. Biophys J. 2006;90:4137–4144.

    PubMed  CAS  Google Scholar 

  72. Meredith P, Sarna T. The physical and chemical properties of eumelanin. Pigment Cell Res. 2006;19:572–594.

    PubMed  CAS  Google Scholar 

  73. Riesz J, Sarna T, Meredith P. Radiative relaxation in synthetic pheomelanin. J Phys Chem B. 2006;110:13985–13990.

    PubMed  CAS  Google Scholar 

  74. Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104:946–952.

    PubMed  CAS  Google Scholar 

  75. Rajadhyaksha M, Anderson RR, Webb RH. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl Opt. 1999;38:2105–2115.

    PubMed  CAS  Google Scholar 

  76. Rajadhyaksha M, Gonzalez S, Zavislan JM, Anderson RR, Webb RH. In vivo confocal scanning laser microscopy of human skin II: advances in instrumentation and comparison with histology. J Invest Dermatol. 1999;113:293–303.

    PubMed  CAS  Google Scholar 

  77. Yamashita T, Akita H, Astner S, Miyakawa M, Lerner EA, Gonzalez S. In vivo assessment of pigmentary and vascular compartments changes in UVA exposed skin by reflectance-mode confocal microscopy. Exp Dermatol. 2007;16:905–911.

    PubMed  CAS  Google Scholar 

  78. Riley PA. Radicals in melanin biochemistry. Ann N Y Acad Sci. 1988;551:111–119; discussion 119-120.

    PubMed  CAS  Google Scholar 

  79. Rozanowska M, Sarna T, Land EJ, Truscott TG. Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med. 1999;26:518–525.

    PubMed  CAS  Google Scholar 

  80. Poh Agin P, Sayre RM, Chedekel MR. Photodegradation of phaeomelanin: an in vitro model. Photochem Photobiol. 1980;31:359–362.

    PubMed  CAS  Google Scholar 

  81. Lerner AB, McGuire JS. Melanocyte-stimulating hormone and adrenocorticotrophic hormone. their relation to pigmentation. N Engl J Med. 1964;270:539–546.

    PubMed  CAS  Google Scholar 

  82. Abdel-Malek Z, Swope VB, Suzuki I, et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci U S A. 1995;92:1789–1793.

    PubMed  CAS  Google Scholar 

  83. Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes, C. Melanocortin-1 receptor structure and functional regulation. Pigment Cell Res. 2005;18:393–410.

    PubMed  CAS  Google Scholar 

  84. Konig S, Luger TA, Scholzen TE. Monitoring neuropeptide-specific proteases: processing of the proopiomelanocortin peptides adrenocorticotropin and alpha-melanocyte-stimulating hormone in the skin. Exp Dermatol. 2006;15:751–761.

    PubMed  Google Scholar 

  85. Hunt G, Kyne S, Wakamatsu K, Ito S, Thody AJ. Nle4DPhe7 alpha-melanocyte-stimulating hormone increases the eumelanin:phaeomelanin ratio in cultured human melanocytes. J Invest Dermatol. 1995;104:83–85.

    PubMed  CAS  Google Scholar 

  86. Gaggioli C, Busca R, Abbe P, Ortonne JP, Ballotti R. Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes. Pigment Cell Res. 2003;16:374–382.

    PubMed  CAS  Google Scholar 

  87. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997;272:503–509.

    PubMed  CAS  Google Scholar 

  88. Aoki H, Moro O. Involvement of microphthalmia-associated transcription factor (MITF) in expression of human melanocortin-1 receptor (MC1R). Life Sci. 2002;71:2171–2179.

    PubMed  CAS  Google Scholar 

  89. Scott MC, Suzuki I, Abdel-Malek ZA. Regulation of the human melanocortin 1 receptor expression in epidermal melanocytes by paracrine and endocrine factors and by ultraviolet radiation. Pigment Cell Res. 2002;15:433–439.

    PubMed  CAS  Google Scholar 

  90. Suzuki I, Tada A, Ollmann MM, et al. Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to alpha-melanotropin. J Invest Dermatol. 1997;108:838–842.

    PubMed  CAS  Google Scholar 

  91. Abdel-Malek Z, Suzuki I, Tada A, Im S, Akcali C. The melanocortin-1 receptor and human pigmentation. Ann N Y Acad Sci. 1999;885:117–133.

    PubMed  CAS  Google Scholar 

  92. Hirobe T. Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res. 2005;18:2–12.

    PubMed  CAS  Google Scholar 

  93. Kadekaro AL, Kavanagh RJ, Wakamatsu K, Ito S, Pipitone MA, Abdel-Malek ZA. Cutaneous photobiology. The melanocyte vs. the sun: who will win the final round? Pigment Cell Res. 2003;16:434–447.

    PubMed  CAS  Google Scholar 

  94. Robbins LS, Nadeau JH, Johnson KR, et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell. 1993;72:827–834.

    PubMed  CAS  Google Scholar 

  95. Bastiaens M, ter Huurne J, Gruis N, et al. The melanocortin-1-receptor gene is the major freckle gene. Hum Mol Genet. 2001;10:1701–1708.

    PubMed  CAS  Google Scholar 

  96. Ringholm A, Klovins J, Rudzish R, Phillips S, Rees JL, Schioth HB. Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J Invest Dermatol. 2004;123:917–923.

    PubMed  CAS  Google Scholar 

  97. Kennedy C, ter Huurne J, Berkhout M, et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001;117:294–300.

    PubMed  CAS  Google Scholar 

  98. Smith G, Wilkie MJ, Deeni YY, et al. Melanocortin 1 receptor (MC1R) genotype influences erythemal sensitivity to psoralen-ultraviolet A photochemotherapy. Br J Dermatol. 2007;157:1230–1234.

    PubMed  CAS  Google Scholar 

  99. Parrish JA, Jaenicke KF, Anderson RR. Erythema and melanogenesis action spectra of normal human skin. Photochem Photobiol. 1982;36:187–191.

    PubMed  CAS  Google Scholar 

  100. Wagner JK, Parra EJ, L Norton H, Jovel C, Shriver MD. Skin responses to ultraviolet radiation: effects of constitutive pigmentation, sex, and ancestry. Pigment Cell Res. 2002;15:385–390.

    PubMed  Google Scholar 

  101. Chung JH, Koh WS, Youn JI. Relevance of skin phototyping to a Korean population. Clin Exp Dermatol. 1994;19:476–478.

    PubMed  CAS  Google Scholar 

  102. Stanford DG, Georgouras KE, Sullivan EA, Greenoak GE. Skin phototyping in Asian Australians. Australas J Dermatol. 1996;37(Suppl 1):S36–S38.

    PubMed  Google Scholar 

  103. Zmudzka BZ, Hearing VJ, Beer JZ. Photobiologic role of melanin distribution in the epidermis. J Photochem Photobiol B. 2006;84:231.

    PubMed  CAS  Google Scholar 

  104. Hacham H, Freeman SE, Gange RW, Maytum DJ, Sutherland JC, Sutherland BM. Do pyrimidine dimer yields correlate with erythema induction in human skin irradiated in situ with ultraviolet light (275-365 nm)? Photochem Photobiol. 1991;53:559–563.

    PubMed  CAS  Google Scholar 

  105. de Gruijl FR, Rebel H. Early events in UV carcinogenesis–DNA damage, target cells and mutant p53 foci. Photochem Photobiol. 2008;84:382–387.

    PubMed  CAS  Google Scholar 

  106. Eller MS, Ostrom K, Gilchrest BA. DNA damage enhances melanogenesis. Proc Natl Acad Sci U S A. 1996;93:1087–1092.

    PubMed  CAS  Google Scholar 

  107. Gilchrest BA, Zhai S, Eller MS, Yarosh DB, Yaar M. Treatment of human melanocytes and S91 melanoma cells with the DNA repair enzyme T4 endonuclease V enhances melanogenesis after ultraviolet irradiation. J Invest Dermatol. 1993;101:666–672.

    PubMed  CAS  Google Scholar 

  108. Nylander K, Bourdon JC, Bray SE, et al. Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response. J Pathol. 2000;190:39–46.

    PubMed  CAS  Google Scholar 

  109. Khlgatian MK, Hadshiew IM, Asawanonda P, et al. Tyrosinase gene expression is regulated by p53. J Invest Dermatol. 2002;118:126–132.

    PubMed  CAS  Google Scholar 

  110. Cui R, Widlund HR, Feige E, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853–864.

    PubMed  CAS  Google Scholar 

  111. Bohm M, Wolff I, Scholzen TE, et al. alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem. 2005;280:5795–5802.

    PubMed  Google Scholar 

  112. Kadekaro AL, Kavanagh R, Kanto H, et al. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res. 2005;65:4292–4299.

    PubMed  CAS  Google Scholar 

  113. Passeron T, Namiki T, Passeron HJ, Le Pape E, Hearing VJ. Forskolin protects keratinocytes from UVB-induced apoptosis and increases DNA repair independent of its effects on melanogenesis. J Invest Dermatol. 2009;129:162–166.

    PubMed  CAS  Google Scholar 

  114. Scott G, Deng A, Rodriguez-Burford C, et al. Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol. 2001;117:1412–1420.

    PubMed  CAS  Google Scholar 

  115. Marchese C, Maresca V, Cardinali G, et al. UVB-induced activation and internalization of keratinocyte growth factor receptor. Oncogene. 2003;22:2422–2431.

    PubMed  CAS  Google Scholar 

  116. Gilchrest BA, Blog FB, Szabo G. Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol. 1979;73:141–143.

    PubMed  CAS  Google Scholar 

  117. Herzberg AJ, Dinehart SM. Chronologic aging in black skin. Am J Dermatopathol. 1989;11:319–328.

    PubMed  CAS  Google Scholar 

  118. Staricco RJ, Pinkus H. Quantitative and qualitative data on the pigment cells of adult human epidermis. J Invest Dermatol. 1957;28:33–45.

    PubMed  CAS  Google Scholar 

  119. Alaluf S, Barrett K, Blount M, Carter N. Ethnic variation in tyrosinase and TYRP1 expression in photoexposed and photoprotected human skin. Pigment Cell Res. 2003;16:35–42.

    PubMed  CAS  Google Scholar 

  120. Tadokoro T, Yamaguchi Y, Batzer J, et al. Mechanisms of skin tanning in different racial/ethnic groups in response to ultraviolet radiation. J Invest Dermatol. 2005;124:1326–1332.

    PubMed  CAS  Google Scholar 

  121. Abdel-Malek Z, Swope V, Collins C, Boissy R, Zhao H, Nordlund J. Contribution of melanogenic proteins to the heterogeneous pigmentation of human melanocytes. J Cell Sci. 1993;106 (Pt 4):1323–1331.

    PubMed  CAS  Google Scholar 

  122. Andreassi L, Casini L, Simoni S, Bartalini P, Fimiani M. Measurement of cutaneous colour and assessment of skin type. Photodermatol Photoimmunol Photomed. 1990;7:20–24.

    PubMed  CAS  Google Scholar 

  123. Pershing LK, Tirumala VP, Nelson JL, et al. Reflectance spectrophotometer: the dermatologists’ sphygmomanometer for skin phototyping? J Invest Dermatol. 2008;128:1633–1640.

    PubMed  CAS  Google Scholar 

  124. Konrad K, Wolff K. Hyperpigmentation, melanosome size, and distribution patterns of melanosomes. Arch Dermatol. 1973;107:853–860.

    PubMed  CAS  Google Scholar 

  125. Szabo G, Gerald AB, Pathak MA, Fitzpatrick TB. Racial differences in the fate of melanosomes in human epidermis. Nature. 1969;222:1081–1082.

    PubMed  CAS  Google Scholar 

  126. Limat A, Salomon D, Carraux P, Saurat JH, Hunziker T. Human melanocytes grown in epidermal equivalents transfer their melanin to follicular outer root sheath keratinocytes. Arch Dermatol Res. 1999;291:325–332.

    PubMed  CAS  Google Scholar 

  127. Cardinali G, Bolasco G, Aspite N, et al. Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J Invest Dermatol. 2008;128:558–567.

    PubMed  CAS  Google Scholar 

  128. Seiberg M, Paine C, Sharlow E, et al. The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions. Exp Cell Res. 2000;254:25–32.

    PubMed  CAS  Google Scholar 

  129. Babiarz-Magee L, Chen N, Seiberg M, Lin CB. The expression and activation of protease-activated receptor-2 correlate with skin color. Pigment Cell Res. 2004;17:241–251.

    PubMed  CAS  Google Scholar 

  130. Yoshida Y, Hachiya A, Sriwiriyanont P, et al. Functional analysis of keratinocytes in skin color using a human skin substitute model composed of cells derived from different skin pigmentation types. Faseb J. 2007;21:2829–2839.

    PubMed  CAS  Google Scholar 

  131. Sarangarajan R, Zhao Y, Babcock G, Cornelius J, Lamoreux ML, Boissy RE. Mutant alleles at the brown locus encoding tyrosinase-related protein-1 (TRP-1) affect proliferation of mouse melanocytes in culture. Pigment Cell Res. 2000;13:337–344.

    PubMed  CAS  Google Scholar 

  132. Han J, Kraft P, Nan H, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4, e1000074.

    PubMed  Google Scholar 

  133. Norton HL, Kittles RA, Parra E, et al. Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol Biol Evol. 2007;24:710–722.

    PubMed  CAS  Google Scholar 

  134. Kobayashi N, Nakagawa A, Muramatsu T, et al. Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J Invest Dermatol. 1998;110:806–810.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Financial support was provided by a grant from the Dermatology Foundation (PI: Christopher R. Shea, MD). We thank Diana Bolotin, MD, PhD for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ortel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ortel, B., Racz, M., Lang, D., Calzavara-Pinton, P.G. (2009). Endogenous Protection by Melanin. In: Baron, E. (eds) Light-Based Therapies for Skin of Color. Springer, London. https://doi.org/10.1007/978-1-84882-328-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-328-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-327-3

  • Online ISBN: 978-1-84882-328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics