Skip to main content

Principles of Light-Skin Interactions

  • Chapter
  • First Online:

Abstract

Skin is the largest human organ. It covers between 1.5 and 2 m2, comprising about one-sixth of total body weight. Skin performs a complex role in human physiology. It serves as a barrier to the environment and acts as a channel for communication to the outside world. For example, skin protects us from water loss, ultraviolet (UV) rays of the sun, friction, and impact wounds. It also helps in regulating body temperature and metabolism. All photobiological responses are influenced heavily by the optical properties of skin. Therefore, for the successful development of photomedicine, in-depth knowledge and understanding of light-skin interactions, specifically known as skin optics, is required. The transfer of optical radiation into human skin depends on the absorption and scattering properties of three functional skin layers: epidermis, dermis, and hypodermis. The structures and component chromophores of these layers determine the attenuation of radiation in skin. The enhanced penetration of optical radiation as well as selective targeting of pathology can be achieved by studying and analyzing the wavelength-dependent interactions of light with skin. For example, considering that melanin exhibits maximum absorption in the UV and blue spectral ranges, whereas blood preferentially absorbs blue and yellow light, the treatment protocol have been devised that target pigmented and vascular lesions, respectively.1 The chromophores, such as melanin, blood, water, and lipid determine skin absorption. Scattering largely determines the depths to which light penetrates through skin, as it dominates absorption in the visible and near-infrared (NIR) spectral ranges by at least one order of magnitude. It has also been shown that light scattering from dermal collagen significantly modifies skin color.2 Thus, detailed information on scattering is required for the accurate estimation of the light penetration through skin. An optical “window” between 600 and 1300 nm offers the possibility of treating large tissue volumes3 and using exogenous chromophores/fluorophores for contrast-enhancing.46 Optical imaging and spectroscopy allow for noninvasive assessment of skin pathology and treatment efficacy.7-9 In particular, reflectance imaging and spectroscopy provide information on the distribution and quantities of the scatterers and chromophores,10 whereas fluorescence responses determine the biochemical composition of the interrogated biotissue.11,12 The development of lasers and light-based medical devices has been stimulated by the achievements of diagnostic and therapeutic photomedicine.13-15 This chapter provides a brief summary and description of the properties of light, its interaction with human skin, the list of the medical light sources, and the diagnostic and/or therapeutic uses of currently available light-based devices within the visible to NIR spectral range in dermatology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mueller GJ, Sliney DH, eds. Dosimetry of Laser Radiation in Medicine and Biology, SPIE Inst. Advanced Opt. Techn. IS5, Bellingham, WA: SPIE Press; 1989.

    Google Scholar 

  2. Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–19.

    PubMed  CAS  Google Scholar 

  3. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198:1264–1267.

    PubMed  CAS  Google Scholar 

  4. Al-Arashi MY, Salomatina E, Yaroslavsky AN. Multimodal confocal microscopy for diagnosing nonmelanoma skin cancers. Lasers Surg Med. 2007;39:696–705.

    PubMed  Google Scholar 

  5. Yaroslavsky AN, Neel V, Anderson RR. Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging. J Invest Dermatol. 2003;121:259–266.

    PubMed  CAS  Google Scholar 

  6. Yaroslavsky AN, Neel V, Anderson RR. Fluorescence polarization imaging for delineating nonmelanoma skin cancers. Opt Lett. 2004;29:2010–2012.

    PubMed  CAS  Google Scholar 

  7. Gonzalez S, Tannous Z. Real-time, in vivo confocal reflectance microscopy of basal cell carcinoma. J Am Acad Dermatol. 2002;47:869–874.

    PubMed  Google Scholar 

  8. Marghoob AA, Charles CA, Busam KJ, et al. In vivo confocal scanning laser microscopy of a series of congenital melanocytic nevi suggestive of having developed malignant melanoma. Arch Dermatol. 2005;141:1401–1412.

    PubMed  Google Scholar 

  9. Nori S, Rius-Diaz F, Cuevas J, et al. Sensitivity and specificity of reflectance-mode confocal microscopy for in vivo diagnosis of basal cell carcinoma: a multicenter study. J Am Acad Dermatol. 2004;51:923–930.

    PubMed  Google Scholar 

  10. Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J Invest Dermatol. 2001;117:1452–1457.

    PubMed  CAS  Google Scholar 

  11. Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N. In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol. 2001;73:178–183.

    PubMed  CAS  Google Scholar 

  12. Lakowic JR. Principles of Fluorescence Spectroscopy. New York: Plenum Press; 1983.

    Google Scholar 

  13. Schubert EF. Light-Emitting Diodes. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  14. Tuchin VV. Lasers and fiber optics in biomedicine. Laser Physics. 1993;3:767–820, 925-950.

    Google Scholar 

  15. Tuchin VV. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis. Vol. TT38, Tutorial texts in optical engineering. Bellingham, WA: SPIE Press; 2000:352 p.

    Google Scholar 

  16. Ishimaru A. Wave Propagation and Scattering in Random Media. New York: Academic Press; 1978;1:66.

    Google Scholar 

  17. Bashkatov AA, Genina EA, Kochubey VI, Tuchin VV.  Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys. 2005;15:2543–2555.

    Google Scholar 

  18. Graaff R, Dassel ACM, Koelink MH, de Mul FFM, Aarnoudse JG, Zijistra WG. Optical properties of human dermis in vitro and in vivo. Appl Opt. 1993;32:435–447.

    PubMed  CAS  Google Scholar 

  19. Jacques SL, Alter CA, Prahl SA. Angular dependence of HeNe laser light scattering by human dermis. Lasers Life Sci. 1987;1:309–334.

    Google Scholar 

  20. Marchesini R, Bertoni A, Andreola S, Melloni E, Sichirollo AE. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Appl Opt. 1989;28:2318–2324

    PubMed  CAS  Google Scholar 

  21. Muller G, Roggan A, eds. Laser-Induced Interstitial Thermotherapy. Bellingham, WA: SPIE Press; 1995.

    Google Scholar 

  22. Peters VG, Wyman DR, Patterson MS, Frank GL. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys Med Biol. 1990;35:1317–1314.

    PubMed  CAS  Google Scholar 

  23. Prahl S. Light transport in tissue, PhD dissertation. University of Texas at Austin; 1988.

    Google Scholar 

  24. Salomatina E, Jiang B, Novak J, Yaroslavsky AN. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J Biomed Opt. 2006;11:064026.

    PubMed  Google Scholar 

  25. Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43:2465–2478.

    PubMed  CAS  Google Scholar 

  26. Troy TL, Thennadil SN. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J Biomed Opt. 2001;6:167–176.

    PubMed  CAS  Google Scholar 

  27. van Gemert MJ, Jacques SL, Sterenborg HJ, Star WM. Skin optics. IEEE Trans Biomed Eng. 1989;36:1146–1154.

    PubMed  CAS  Google Scholar 

  28. Wan S, Anderson RR, Parrish JA. Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol. 1981;34:493–499.

    PubMed  CAS  Google Scholar 

  29. Bolin FP, Preuss LE, Taylor RC, Ference RJ. Refractive index of some mammalian tissues using a fiber optic cladding method. Appl Opt. 1989;28:2297–2303.

    PubMed  CAS  Google Scholar 

  30. Kollias N, Baqer A. Spectroscopic characteristics of human melanin in vivo. J Invest Dermatol. 1985;85:38–42.

    PubMed  CAS  Google Scholar 

  31. Kollias N, Baqer A. On the assessment of melanin in human skin in vivo. Photochem Photobiol. 1986;43:49–54.

    PubMed  CAS  Google Scholar 

  32. Konig K, Ruck A, Scheckenburger H. Fluorescence detection and photodynamic activity of endogenous protoporphyrin in human skin. Opt Eng. 1997;31:1470–1474.

    Google Scholar 

  33. . Prahl S. www.omlc.ogi.edu

    Google Scholar 

  34. Sinichkin YP, Utz SR, Mavliutov AH, Pilipenko HA. In vivo fluorescence spectroscopy of the human skin: experiments and models. J Biomed Opt. 1998;3:201–211.

    Google Scholar 

  35. Tuchin VV, ed. Handbook of Optical Biomedical Diagnostics. Vol PM107. Bellingham, WA: SPIE Press; 2002.

    Google Scholar 

  36. Hannemann RE, Dewitt DP, Hanley EJ, Schreiner RL, Bonderman P. Determination of serum bilirubin by skin reflectance: effect of pigmentation. Pediatr Res. 1979;13:1326–1329.

    PubMed  CAS  Google Scholar 

  37. Vitkin IA, Woolsey J, Wilson BC, Anderson RR. Optical and thermal characterization of natural (Sepia officinalis) melanin. Photochem Photobiol. 1994;59:455–462.

    PubMed  CAS  Google Scholar 

  38. Zijistra WG, Buursma A, Meeuwsen-van der Roest WP. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin Chem. 1991;37:1633–1638.

    Google Scholar 

  39. Kuenstner JT, Norris KH. Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm. J Near Infrared Spectroscopy. 1994;2:59–65.

    CAS  Google Scholar 

  40. Barton JK, Frangineas G, Pummer H, Black JF. Cooperative phenomena in two-pulse, two-color laser photocoagulation of cutaneous blood vessels. Photochem Photobiol. 2001;73:642–650.

    PubMed  CAS  Google Scholar 

  41. Yang MU, Yaroslavsky AN, Farinelli WA, et al. Long-pulsed neodymium:yttrium-aluminum-garnet laser treatment for port-wine stains. J Am Acad Dermatol. 2005;52:480–490.

    PubMed  Google Scholar 

  42. Black JF, Barton JK. Chemical and structural changes in blood undergoing laser photocoagulation. Photochem Photobiol. 2004;80:89–97.

    PubMed  CAS  Google Scholar 

  43. Anderson RR, Farinelli W, Laubach H, et al. Selective photothermolysis of lipid-rich tissues: a free electron laser study. Lasers Surg Med. 2006;38:913–919.

    PubMed  Google Scholar 

  44. Kollias N, Gillies R, Moran M, Kochevar IE, Anderson RR. Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol. 1998;111:776–780.

    PubMed  CAS  Google Scholar 

  45. Parrish JA, Deutsch TF. Laser photomedicine. IEEE J Quant Electron. 1984;QE-20:1386–1396.

    Google Scholar 

  46. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–527.

    PubMed  CAS  Google Scholar 

  47. Gay-Crosier F, Polla LL, Tschopp J, Schifferli JA. Complement activation by pulsed tunable dye laser in normal skin and hemangioma. J Invest Dermatol. 1990;94:426–431.

    PubMed  CAS  Google Scholar 

  48. Greenwald J, Rosen S, Anderson RR, et al. Comparative histological studies of the tunable dye (at 577 nm) laser and argon laser: the specific vascular effects of the dye laser. J Invest Dermatol. 1981;77:305–310.

    PubMed  CAS  Google Scholar 

  49. Paul BS, Anderson RR, Jarve J, Parrish JA. The effect of temperature and other factors on selective microvascular damage caused by pulsed dye laser. J Invest Dermatol. 1983;81:333–336.

    PubMed  CAS  Google Scholar 

  50. Welch AJ. The thermal response to laser irradiated tissue. IEEE J Quant Electron. 1984;QE-20:1471–1481.

    Google Scholar 

  51. Altshuler GB, Anderson RR, Manstein D, Zenzie HH, Smirnov MZ. Extended theory of selective photothermolysis. Lasers Surg Med. 2001;29:416–432.

    PubMed  CAS  Google Scholar 

  52. Akiyama M, Smith LT, Shimizu H. Changing patterns of localization of putative stem cells in developing human hair follicles. J Invest Dermatol. 2000;114:321–327.

    PubMed  CAS  Google Scholar 

  53. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–1337.

    PubMed  CAS  Google Scholar 

  54. Lyle S, Christofidou-Solomidou M, Liu Y, Elder DE, Albelda S, Cotsarelis G. Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Investig Dermatol Symp Proc. 1999;4:296–301.

    PubMed  CAS  Google Scholar 

  55. Neumann RA, Knobler RM, Leonhartsberger H, Gebhart W. Comparative histochemistry of port-wine stains after copper vapor laser (578 nm) and argon laser treatment. J Invest Dermatol. 1992;99:160–167.

    PubMed  CAS  Google Scholar 

  56. van Gemert MJ, Welch AJ, Amin AP Is there an optimal laser treatment for port wine stains. Lasers Surg Med. 1986;6:76–83.

    PubMed  CAS  Google Scholar 

  57. Anderson RR, Margolis RJ, Watenabe S, Flotte T, Hruza GJ, Dover JS. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd:YAG laser pulses at 1064, 532, and 355 nm. J Invest Dermatol. 1989;93:28–32.

    PubMed  CAS  Google Scholar 

  58. Taylor CR, Anderson RR, Gange RW, Michaud NA, Flotte TJ. Light and electron microscopic analysis of tattoos treated by Q-switched ruby laser. J Invest Dermatol. 1991;97:131–136.

    PubMed  CAS  Google Scholar 

  59. Garden JM, Tan OT, Kerschmann R, et al. Effect of dye laser pulse duration on selective cutaneous vascular injury. J Invest Dermatol. 1986;87:653–657.

    PubMed  CAS  Google Scholar 

  60. Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1:1–21.

    PubMed  CAS  Google Scholar 

  61. Yang MF, Baron ED. Update on the immunology of UV and visible radiation therapy: phototherapy, photochemotherapy and photodynamic therapy. Expert Rev Dermatol. 2008;3:85–98.

    CAS  Google Scholar 

  62. Altshuler GB, Tuchin VV. Physics behind the light-based technology: skin and hair follicle interactions with light in light-based systems for cosmetic application, ed. Gurpreet Ahluwalia, William Andrew, Inc., Norwich, NY, USA, 2008.

    Google Scholar 

  63. Splinter R, Hooper BA. An Introduction to Biomedical Optics. New York, London: Taylor & Francis; 2007.

    Google Scholar 

  64. Gniadecka M, Wulf HC, Mortensen NN, Poulsen T. Photoprotection in vitiligo and normal skin. A quantitative assessment of the role of stratum corneum, viable epidermis and pigmentation. Acta Derm Venereol. 1996;76:429–432.

    PubMed  CAS  Google Scholar 

  65. Merschbrock U, Hoffmann J, Caspary L, Huber J, Schmickaly U, Lubbers DW. Fast wavelength scanning reflectance spectrophotometer for noninvasive determination of hemoglobin oxygenation in human skin. Int J Microcirc Clin Exp. 1994;14:274–281.

    PubMed  CAS  Google Scholar 

  66. Svaasand LO, Norvang LT, Fiskerstrand EJ, Stopps EKS, Berns MW, Nelson JS. Tissue parameters determining the visual appearance of normal skin and port-wine stains. Lasers Med Sci. 1995;10:55–65.

    Google Scholar 

  67. Rajadhyaksha M, Anderson RR, Webb RH. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl Opt. 1999;38:2105–2115.

    PubMed  CAS  Google Scholar 

  68. Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995;104:946–952.

    PubMed  CAS  Google Scholar 

  69. Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TA. Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt. 2004;9:274–281.

    PubMed  Google Scholar 

  70. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, Hoffmann K. Applications of optical coherence tomography in dermatology. J Dermatol Sci. 2005;40:85–94.

    PubMed  Google Scholar 

  71. Gonzalez S, Rajadhyaksha M, Rubinstein G, Anderson RR. Characterization of psoriasis in vivo by reflectance confocal microscopy. J Med. 1999;30:337–356.

    PubMed  CAS  Google Scholar 

  72. Astner S, Burnett N, Rius-Diaz F, Doukas AG, Gonzalez S, Gonzalez E. Irritant contact dermatitis induced by a common household irritant: a noninvasive evaluation of ethnic variability in skin response. J Am Acad Dermatol. 2006;54:458–465.

    PubMed  Google Scholar 

  73. Ardigo M, Maliszewski I, Cota C, et al. Preliminary evaluation of in vivo reflectance confocal microscopy features of Discoid lupus erythematosus. Br J Dermatol. 2007;156:1196–1203.

    PubMed  CAS  Google Scholar 

  74. Aghassi D, Gonzalez E, Anderson RR, Rajadhyaksha M, Gonzalez S. Elucidating the pulsed-dye laser treatment of sebaceous hyperplasia in vivo with real-time confocal scanning laser microscopy. J Am Acad Dermatol. 2000;43:49–53.

    PubMed  CAS  Google Scholar 

  75. Aghassi D, Anderson RR, Gonzalez S. Time-sequence histologic imaging of laser-treated cherry angiomas with in vivo confocal microscopy. J Am Acad Dermatol. 2000;43:37–41.

    PubMed  CAS  Google Scholar 

  76. Aghassi D, Anderson RR, Gonzalez S. Confocal laser microscopic imaging of actinic keratoses in vivo: a preliminary report. J Am Acad Dermatol. 2000;43:42–48.

    PubMed  CAS  Google Scholar 

  77. Ulrich C, Busch JO, Meyer T, et al. Successful treatment of multiple actinic keratoses in organ transplant patients with topical 5% imiquimod: a report of six cases. Br J Dermatol. 2006;155:451–454.

    PubMed  CAS  Google Scholar 

  78. Horn M, Gerger A, Koller S, et al. The use of confocal laser-scanning microscopy in microsurgery for invasive squamous cell carcinoma. Br J Dermatol. 2007;156:81–84.

    PubMed  CAS  Google Scholar 

  79. Rajadhyaksha M, Menaker G, Flotte T, Dwyer PJ, Gonzalez S. Confocal examination of nonmelanoma cancers in thick skin excisions to potentially guide mohs micrographic surgery without frozen histopathology. J Invest Dermatol. 2001;117:1137–1143.

    PubMed  CAS  Google Scholar 

  80. Gerger A, Koller S, Weger W, et al. Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer. 2006;107:193–200.

    PubMed  Google Scholar 

  81. Pellacani G, Cesinaro AM, Seidenari S. Reflectance-mode confocal microscopy of pigmented skin lesions–improvement in melanoma diagnostic specificity. J Am Acad Dermatol. 2005;53:979–985.

    PubMed  Google Scholar 

  82. Jacques SL, Roman JR, Lee K. Imaging superficial tissues with polarized light. Lasers Surg Med. 2000;26:119–129.

    PubMed  CAS  Google Scholar 

  83. Salomatina E, Muzikansky A, Neel V, Yaroslavsky AN. Multimodal optical imaging and spectroscopy for the intraoperative mapping of nonmelanoma skin cancer. J Appl Phys. in press.

    Google Scholar 

  84. .Tannous Z, Al-Arashi M, Shah S, Yaroslavsky AN. Delineating melanoma using multimodal polarized light imaging. Las. Surg Med. 2009;41:10–16.

    Google Scholar 

  85. 85.Yaroslavsky AN, Salomatina EV, Neel V, Anderson R, Flotte T. Fluorescence polarization of tetracycline derivatives as a technique for mapping nonmelanoma skin cancers. J Biomed Opt. 2007;12:014005.

    PubMed  Google Scholar 

  86. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt. 2007;12:051403.

    PubMed  Google Scholar 

  87. Pan Y, Farkas DL. Noninvasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions. J Biomed Opt. 1998;3:446–455.

    Google Scholar 

  88. Pierce MC, Strasswimmer J, Park BH, Cense B, de Boer JF. Advances in optical coherence tomography imaging for dermatology. J Invest Dermatol. 2004;123:458–463.

    PubMed  CAS  Google Scholar 

  89. Welzel J. Optical coherence tomography in dermatology: a review. Skin Res Technol. 2001;7:1–9.

    PubMed  CAS  Google Scholar 

  90. Pagnoni A, Knuettel A, Welker P, et al. Optical coherence tomography in dermatology. Skin Res Technol. 2000;5:83–87.

    Google Scholar 

  91. Schmitt JM, Yadlowsky MJ, Bonner RF. Subsurface imaging of living skin with optical coherence microscopy. Dermatology. 1995;191:93–98.

    PubMed  CAS  Google Scholar 

  92. Nelson JS, Kelly KM, Zhao Y, Chen Z. Imaging blood flow in human port-wine stain in situ and in real time using optical Doppler tomography. Arch Dermatol. 2001;137:741–744.

    PubMed  CAS  Google Scholar 

  93. Manstein D, Herron GS, Sink RK, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34:426–438.

    PubMed  Google Scholar 

  94. Lloyd JR, Mirkov M. Selective photothermolysis of the sebaceous glands for acne treatment. Lasers Surg Med. 2002;31:115–120.

    PubMed  Google Scholar 

  95. Gold MH. Acne and PDT: new techniques with lasers and light sources. Lasers Med Sci. 2007;22:67–72.

    PubMed  Google Scholar 

  96. Hongcharu W, Taylor CR, Chang Y, Aghassi D, Suthamjariya K, Anderson RR. Topical ALA-photodynamic therapy for the treatment of acne vulgaris. J Invest Dermatol. 2000;115:183–192.

    PubMed  CAS  Google Scholar 

  97. Calzavara-Pinton PG. Repetitive photodynamic therapy with topical delta-aminolaevulinic acid as an appropriate approach to the routine treatment of superficial non-melanoma skin tumours. J Photochem Photobiol B. 1995;29:53–57.

    PubMed  CAS  Google Scholar 

  98. Fijan S, Honigsmann H, Ortel B. Photodynamic therapy of epithelial skin tumours using delta-aminolaevulinic acid and desferrioxamine. Br J Dermatol. 1995;133:282–288.

    PubMed  CAS  Google Scholar 

  99. Kennedy JD, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B: Biol. 1990;6:143–148.

    CAS  Google Scholar 

  100. 100. Wolf P, Rieger E, Kerl H. Topical photodynamic therapy with endogenous porphyrins after application of 5-aminolevulinic acid. An alternative treatment modality for solar keratoses, superficial squamous cell carcinomas, and basal cell carcinomas. J Am Acad Dermatol. 1993;28:17–21.

    PubMed  CAS  Google Scholar 

  101. 101. Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer. 1994;69:605–608.

    PubMed  CAS  Google Scholar 

  102. 102. Cox NH, Eedy DJ, Morton CA. Guidelines for management of Bowen’s disease. British Association of Dermatologists. Br J Dermatol. 1999;141:633–641.

    PubMed  CAS  Google Scholar 

  103. 103. Jones CM, Mang T, Cooper M, Wilson BD, Stoll HL, Jr. Photodynamic therapy in the treatment of Bowen’s disease. J Am Acad Dermatol. 1992;27:979–982.

    PubMed  CAS  Google Scholar 

  104. 104. Morton CA. 5-ALA matches 5-FU in treatment of Bowen’s disease. Dermatol Times. 2000;21:23.

    Google Scholar 

  105. 105. Morton CA, Whitehurst C, Moseley H, McColl JH, Moore JV, Mackie RM. Comparison of photodynamic therapy with cryotherapy in the treatment of Bowen’s disease. Br J Dermatol. 1996;135:766–771.

    PubMed  CAS  Google Scholar 

  106. 106. Robinson PJ, Carruth JA, Fairris GM. Photodynamic therapy: a better treatment for widespread Bowen’s disease. Br J Dermatol. 1988;119:59–61.

    PubMed  CAS  Google Scholar 

  107. 107. Salim A, Leman JA, McColl JH, Chapman R, Morton CA. Randomized comparison of photodynamic therapy with topical 5-fluorouracil in Bowen’s disease. Br J Dermatol. 2003;148:539–543.

    PubMed  CAS  Google Scholar 

  108. 108. Stables GI, Stringer MR, Robinson DJ, Ash DV. The treatment of Bowen’s disease by topical aminolaevulinic acid photodynamic therapy. Br J Dermatol. 1998;139:74.

    Google Scholar 

  109. 109. Svanberg K, Andersson T, Killander D, et al. Photodynamic therapy of non-melanoma malignant tumours of the skin using topical delta-amino levulinic acid sensitization and laser irradiation. Br J Dermatol. 1994;130:743–751.

    PubMed  CAS  Google Scholar 

  110. 110. Zeitouni NC, Shieh S, Oseroff AR. Laser and photodynamic therapy in the management of cutaneous malignancies. Clin Dermatol. 2001;19:328–338.

    PubMed  CAS  Google Scholar 

  111. 111. Gross DJ, Waner M, Schosser RH, Dinehart SM. Squamous cell carcinoma of the lower lip involving a large cutaneous surface. Photodynamic therapy as an alternative therapy. Arch Dermatol. 1990;126:1148–1150.

    PubMed  CAS  Google Scholar 

  112. 112. Kubler AC, Haase T, Staff C, Kahle B, Rheinwald M, Muhling J. Photodynamic therapy of primary nonmelanomatous skin tumours of the head and neck. Lasers Surg Med. 1999;25:60–68.

    PubMed  CAS  Google Scholar 

  113. 113. Lui H, Salasche S, Kollias N, et al. Photodynamic therapy of nonmelanoma skin cancer with topical aminolevulinic acid: a clinical and histologic study. Arch Dermatol. 1995;131:737–738.

    PubMed  CAS  Google Scholar 

  114. 114. Petrelli NJ, Cebollero JA, Rodriguez-Bigas M, Mang T. Photodynamic therapy in the management of neoplasms of the perianal skin. Arch Surg. 1992;127:1436–1438.

    PubMed  CAS  Google Scholar 

  115. 115. Rebeiz N, Arkins S, Rebeiz CA, Simon J, Zachary JF, Kelley KW. Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy. Cancer Res. 1996;56:339–344.

    PubMed  CAS  Google Scholar 

  116. 116. Wolf P, Kerl H. Photodynamic therapy in patient with xeroderma pigmentosum. Lancet. 1991;337:1613–1614.

    PubMed  CAS  Google Scholar 

  117. 117. Fritsch C, Goerz G, Ruzicka T. Photodynamic therapy in dermatology. Arch Dermatol. 1998;134:207–214.

    PubMed  CAS  Google Scholar 

  118. 118. Taub AF. Photodynamic therapy for the treatment of acne: a pilot study. J Drugs Dermatol. 2004;3:S10–S14.

    PubMed  Google Scholar 

  119. 119. Goldman MP, Boyce SM. A single-center study of aminolevulinic acid and 417 NM photodynamic therapy in the treatment of moderate to severe acne vulgaris. J Drugs Dermatol. 2003;2:393–396.

    PubMed  Google Scholar 

  120. 120. Touma DJ, Gilchrest BA. Topical photodynamic therapy: a new tool in cosmetic ­dermatology. Semin Cutan Med Surg. 2003;22:124–130.

    PubMed  Google Scholar 

  121. 121. Morton CA, Brown SB, Collins S, et al. Guidelines for topical photodynamic therapy: report of a workshop of the British Photodermatology Group. Br J Dermatol. 2002;146:552–567.

    PubMed  CAS  Google Scholar 

  122. 122. Stender IM, Na R, Fogh H, Gluud C, Wulf HC. Photodynamic therapy with 5-aminolaevulinic acid or placebo for recalcitrant foot and hand warts: randomised double-blind trial. Lancet. 2000;355:963–966.

    PubMed  CAS  Google Scholar 

  123. 123. Frank RG, Bos JD. Photodynamic therapy for condylomata acuminata with local application of 5-aminolevulinic acid. Genitourin Med. 1996;72:70–71.

    PubMed  CAS  Google Scholar 

  124. 124. Gold MH, Bradshaw VL, Boring MM, Bridges TM, Biron JA, Lewis TL. Treatment of sebaceous gland hyperplasia by photodynamic therapy with 5-aminolevulinic acid and a blue light source or intense pulsed light source. J Drugs Dermatol. 2004;3:S6–S9.

    PubMed  Google Scholar 

  125. 125. Rivard J, Ozog D. Henry Ford Hospital dermatology experience with Levulan Kerastick and blue light photodynamic therapy. J Drugs Dermatol. 2006;5:556–561.

    PubMed  Google Scholar 

  126. 126. Dierickx CC, Goldenhersh M, Dwyer P, Stratigos A, Mihm M, Anderson RR. Photodynamic therapy for nevus sebaceus with topical delta-aminolevulinic acid. Arch Dermatol. 1999;135:637–640.

    PubMed  CAS  Google Scholar 

  127. 127. Boehncke WH, Konig K, Kaufmann R, Scheffold W, Prummer O, Sterry W. Photodynamic therapy in psoriasis: suppression of cytokine production in vitro and recording of fluorescence modification during treatment in vivo. Arch Dermatol Res. 1994;286:300–303.

    PubMed  CAS  Google Scholar 

  128. 128. Boehncke WH, Sterry W, Kaufmann R. Treatment of psoriasis by topical photodynamic therapy with polychromatic light. Lancet. 1994;343:801.

    PubMed  CAS  Google Scholar 

  129. 129. Tandon YK, Yang MF, Baron ED. Role of photodynamic therapy in psoriasis: a brief review. Photodermatol Photoimmunol Photomed. 2008;24:222–230.

    PubMed  CAS  Google Scholar 

  130. 130. Nelson JS, McCullough JL, Berns MW. Principles and applications of photodynamic therapy in dermatology. In: Arndt KA, Dover JS, Olbricht SM, eds. Lasers in Cutaneous and Aesthetic Surgery. Philadelphia, PA: Lippincott-Raven Publishers; 1997:349–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna N. Yaroslavsky .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5 Optical properties of human skin measured ex vivo (standard error values are given in parentheses)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Yang, M.F., Tuchin, V.V., Yaroslavsky, A.N. (2009). Principles of Light-Skin Interactions. In: Baron, E. (eds) Light-Based Therapies for Skin of Color. Springer, London. https://doi.org/10.1007/978-1-84882-328-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-328-0_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-327-3

  • Online ISBN: 978-1-84882-328-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics