Skip to main content

Part of the book series: Advances in Pattern Recognition ((ACVPR))

  • 2630 Accesses

Abstract

This chapter presents a review of recent advances in the adaptive wavelet transform applied to image and video coding. We focus on research to improve the properties of the wavelet transform rather than on the entire encoder. These advances include enhancements to the construction of an adaptive wavelet transform that results in fewer wavelet coefficients and improvements in motion-compensated temporal filtering that achieve temporal scalability for video compression. These nonlinear wavelet transforms provide added flexibility for image and video representations and accomplish higher compression efficiency than traditional wavelets. The authors also discuss several future research directions in the summary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams M (1999) Reversible Wavelet Transforms and Their Application to Embedded Image Compression. National Library of Canada – Bibliothèque nationale du Canada

    Google Scholar 

  • Adams M (2001) The JPEG2000 Still Image Compression Standard. ISO/IEC JTC 1

    Google Scholar 

  • Adams M, Kossentini F (2000) Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Transactions on Image Processing 9(6):1010–1024

    Article  MATH  MathSciNet  Google Scholar 

  • Aizawa K, Huang T (1995) Model-based image coding advanced video coding techniques for verylow bit-rate applications. Proceedings of the IEEE 83(2):259–271

    Article  Google Scholar 

  • Akyol E, Tekalp A, Civanlar M (2004) Motion-compensated temporal filtering within the H. 264/AVC standard. International Conference on Image Processing 4:2291–2294

    Google Scholar 

  • Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Transactions on Image Processing 1(2):205–220

    Article  Google Scholar 

  • Averbuch A, Zheludev V (2004) A new family of spline-based biorthogonal wavelet transforms and their application to image compression. IEEE Transactions on Image Processing 13(7):993

    Article  MathSciNet  Google Scholar 

  • Berger T (1971) Rate Distortion Theory. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Boulgouris N, Tzovaras D, Strintzis M (2001) Lossless image compression based on optimal prediction, adaptivelifting, and conditional arithmetic coding. IEEE Transactions on Image Processing 10(1):1–14

    Article  MATH  Google Scholar 

  • Breiman L (1984) Classification and Regression Trees. Chapman 8 Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Calderbank R, Daubechies I, Sweldens W, Yeo B (1998) Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis 5(3):332–369

    Article  MATH  MathSciNet  Google Scholar 

  • Candes E (1999) Ridgelets: a key to higher-dimensional intermittency? Philosophical Transactions: Mathematical, Physical and Engineering Sciences 357(1760):2495–2509

    Article  MATH  MathSciNet  Google Scholar 

  • Chan T, Zhou H (2002) ENO-wavelet transforms for piecewise smooth functions. Siam Journal on Numerical Analysis 40(4):1369–1404

    Article  MATH  MathSciNet  Google Scholar 

  • Chang C, Girod B (2007) Direction-adaptive discrete wavelet transform for image compression. IEEE Transactions on Image Processing 16(5):1289–1302

    Article  MathSciNet  Google Scholar 

  • Chen P, Woods J (2004) Bidirectional MC-EZBC with lifting implementation. IEEE Transactions on Circus and Systems for Video Technology 14(10):1183–1194

    Article  Google Scholar 

  • Choi S, Woods J (1999) Motion-compensated 3-D subband coding of video. IEEE Transactions on Image Processing 8(2):155–167

    Article  Google Scholar 

  • Claypoole R, Davis G, Sweldens W, Baraniuk R (2003) Nonlinear wavelet transforms for image coding via lifting. IEEE Transactions on Image Processing 12(12):1449–1459

    Article  MathSciNet  Google Scholar 

  • Coifman R, Wickerhauser M (1992) Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory 38(2 Part 2):713–718

    Google Scholar 

  • Dasu A, Panchanathan S (2004) A wavelet-based sprite codec. IEEE Transactions on Circuits and Systems for Video Technology 14(2):244–255

    Article  Google Scholar 

  • Daubechies I, Sweldens W (1998) Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications 4(3):247–269

    Article  MATH  MathSciNet  Google Scholar 

  • Davis G (1994) Adaptive Nonlinear Approximations. PhD thesis, New York University

    Google Scholar 

  • Deans S (1983) The Radon Transform and Some of Its Applications. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Deever A, Hemami S (2003) Lossless image compression with projection-based and adaptive reversible integer wavelet transforms. IEEE Transactions on Image Processing 12(5): 489–499

    Article  MathSciNet  Google Scholar 

  • Ding W, Wu F, Li S (2004) Lifting-based wavelet transform with directionally spatial prediction. In: Picture Coding Symp., San Francisco, CA, December, pp 15–17

    Google Scholar 

  • Ding W, Wu F, Xu X, Li S, Li H (2007) Adaptive directional lifting-based wavelet transform for image coding. IEEE Transactions on Image Processing 16(2):416–427

    Article  MathSciNet  Google Scholar 

  • Do M, Vetterli M (2005) The contourlet transform: an efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12):2091–2106

    Article  MathSciNet  Google Scholar 

  • Donoho D, Duncan M (2000) Digital curvelet transform: strategy, implementation and experiments. Proceedings of Aerosense pp 12–29

    Google Scholar 

  • Donoho D, Vetterli M, DeVore R, Daubechies I (1998) Data compression and harmonic analysis. IEEE Transactions on Information Theory 44(6):2435–2476

    Article  MATH  MathSciNet  Google Scholar 

  • Dragotti P, Vetterli M (2003) Wavelet footprints: theory, algorithms, and applications. IEEE Transactions on Signal Processing 51(5):1306–1323

    Article  MathSciNet  Google Scholar 

  • Field D (1987) Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A, Optics and image science 4(12):2379–2394

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6): 721–741

    Article  MATH  Google Scholar 

  • Gerek O, Cetin A (2005) Lossless image compression using an edge adapted lifting predictor. IEEE International Conference on Image Processing 2:730–733

    Google Scholar 

  • Gerek O, Cetin A (2006) A 2-D orientation-adaptive prediction filter in lifting structures for image coding. IEEE Transactions on Image Processing 15(1):106–111

    Article  Google Scholar 

  • Golwelkar A, Woods J (2003) Scalable video compression using longer motion compensated temporal filters. Proceedings of SPIE 5150:1406–1416

    Article  Google Scholar 

  • Grangetto M, Magli E, Martina M, Olmo G, di Elettronica D (2002) Optimization and implementation of the integer wavelet transformfor image coding. IEEE Transactions on Image Processing 11(6):596–604

    Article  Google Scholar 

  • He Z, Mitra S (2005) From rate-distortion analysis to resource-distortion analysis. IEEE Circuits and Systems Magazine 5(3):6–18

    Google Scholar 

  • Hyvärinen A, Hurri J, Väyrynen J (2003) Bubbles: a unifying framework for low-level statistical properties of natural image sequences. Journal of the Optical Society of America A 20(7): 1237–1252

    Article  Google Scholar 

  • Kim B, Pearlman W (1997) An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). Proceedings of the Data Compression Conference pp 251–260

    Google Scholar 

  • Kovacevic J, Verrerli M (1992) Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rłnł. IEEE Transactions on Information Theory 38(2):533–555

    Article  Google Scholar 

  • LePennec E, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing 14(4):423–438

    Article  MathSciNet  Google Scholar 

  • Li F, Ling N (2006) Improved update steps through motion vector correlation analysis for scalable video coding. International Conference on Consumer Electronics pp 485–486

    Google Scholar 

  • Li H, Liu G, Zhang Z (2005) Optimization of integer wavelet transforms based on difference correlation structures. IEEE Transactions on Image Processing 14(11):1831–1847

    Article  MathSciNet  Google Scholar 

  • Lu Y, Do M (2003) CRISP contourlets: a critically sampled directional multiresolution image representation. Proceedings of SPIE 5207:655–665

    Article  Google Scholar 

  • Mehrseresht N, Taubman D (2003) Adaptively weighted update steps in motion compensated lifting based scalable video compression. International Conference on Image Processing 2:771–774

    Google Scholar 

  • Ohm J (1994) Three-dimensional subband coding with motion compensation. IEEE Transactions on Image Processing 3(5):559–571

    Article  Google Scholar 

  • Olshausen B, Field D (1996) Natural image statistics and efficient coding. Network: Computation in Neural Systems 7(2):333–339

    Article  Google Scholar 

  • Olshausen B, Field D (1997) Sparse coding with an overcomplete basis set: a strategy employed by V1. Vision Research 37(23):3311–3325

    Article  Google Scholar 

  • Oraintara S, Tran T, Nguyen T (2003) A class of regular biorthogonal linear-phase filterbanks: theory, structure, and application in image coding. IEEE Transactions on Image Processing 51:12

    MathSciNet  Google Scholar 

  • Ortego A, Ramchandran K (1998) Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine 15(6):23–50

    Article  Google Scholar 

  • Pau G, Tillier C, Pesquet-Popescu B (2004) Optimization of the predict operator in lifting-based motion-compensated temporal filtering. Proceedings of SPIE 5308:712–720

    Article  Google Scholar 

  • Peyré G (2005) Surface compression with geometric bandelets. Proceedings of ACM SIGGRAPH 24(3):601–608

    Google Scholar 

  • Peyre G, Mallat S (2005) Discrete bandelets with geometric orthogonal filters. IEEE International Conference on Image Processing 1:65–68

    Google Scholar 

  • Piella G, Heijmans H (2002) Adaptive lifting schemes with perfect reconstruction. IEEE Transactions on Signal Processing 50(7):1620–1630

    Article  Google Scholar 

  • Reichel J, Menegaz G, Nadenau M, Kunt M (2001) Integer wavelet transform for embedded lossy to lossless imagecompression. IEEE Transactions on Image Processing 10(3):383–392

    Article  MATH  Google Scholar 

  • Reichel J, Schwarz H, Wien M (2005) Scalable Video Coding – Working Draft 1. Document JVT 20

    Google Scholar 

  • Rioul O, Vetterli M, CNET I (1991) Wavelets and signal processing. IEEE Signal Processing Magazine 8(4):14–38

    Article  Google Scholar 

  • Rusert T, Hanke K, Wien M (2004) Optimization for locally adaptive MCTF based on 5/3 lifting. Proceedings of the Picture Coding Symposium

    Google Scholar 

  • Secker A, Taubman D (2003) Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression. IEEE Transactions on Image Processing 12:12

    Google Scholar 

  • Selesnick I, Baraniuk R, Kingsbury N (2005) The dual-tree complex wavelet transform. IEEE Signal Processing Magazine 22(6):123–151

    Article  Google Scholar 

  • Shapiro J, Center D, Princeton N (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 41(12):3445–3462

    Article  MATH  Google Scholar 

  • Sheikh H, Bovik A (2006) Image information and visual quality. IEEE Transactions on Image Processing 15(2):430–444

    Article  Google Scholar 

  • Sikora T (2005) Trends and perspectives in image and video coding. Proceedings of the IEEE 93(1):6–17

    Article  MathSciNet  Google Scholar 

  • Simoncelli E, Olshausen B (2001) Natural images statistics and neural representation. Annual Review of Neuroscience 24(1):1193–1216

    Article  Google Scholar 

  • Sole J, Salembier P (2004) Adaptive discrete generalized lifting for lossless compression. IEEE International Conference on Acoustics, Speech, and Signal Processing 3:57–60

    Google Scholar 

  • Sole J, Salembier P (2006) A Common formulation for interpolation, prediction, and updat lifting design. Proceedings of International Conference on Acoustics, Speech and Signal Processing 2:13–16

    Google Scholar 

  • Song L, Xu J, Xiong H, Wu F (2004) Content adaptive update steps for lifting-based motion compensated temporal filtering. IEEE Proc PCS

    Google Scholar 

  • Song L, Xiong H, Xu J, Wu F, Su H (2005) Adaptive predict based on fading compensation for lifting-based motion compensated temporal filtering. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005 2

    Google Scholar 

  • Starck J, Candes E, Donoho D (2002) The curvelet transform for image denoising. IEEE Transactions on Image Processing 11(6):670–684

    Article  MathSciNet  Google Scholar 

  • Sweldens W (1996) The lifting scheme: a custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 3(2):186–200

    Article  MATH  MathSciNet  Google Scholar 

  • Taubman D (1999) Adaptive, non-separable lifting transforms for image compression. IEEE International Conference on Image Processing 3:772–776

    Google Scholar 

  • Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing 9(7):1158–1170

    Article  Google Scholar 

  • Tillier C, Pesquet-Popescu B, van der Schaar M (2004) Weighted average spatio-temporal update operator for subband video coding. International Conference on Image Processing 2:1305–1308

    Google Scholar 

  • Tillier C, Pesquet-Popescu B, van der Schaar M (2005) Improved update operators for lifting-based motion-compensated temporal filtering. IEEE Signal Processing Letters 12(2):146–149

    Article  Google Scholar 

  • Tillier C, Pesquet-Popescu B, van der Schaar M (2006) 3-band motion-compensated temporal structures for scalable video coding. IEEE Transactions on Image Processing 15(9):2545–57

    Article  Google Scholar 

  • Turaga D, van der Schaar M (2002) Unconstrained temporal scalability with multiple reference and bi-directional motion compensated temporal filtering. doc m8388, Fairfax MPEG meeting

    Google Scholar 

  • Velisavljevic V, Beferull-Lozano B, Vetterli M, Dragotti P (2006) Directionlets: anisotropic multi-directional representation with separable filtering. IEEE Transactions on Image Processing 15(7):1916–1933

    Article  Google Scholar 

  • Vetterli M (2001) Wavelets, approximation, and compression. IEEE Signal Processing Magazine 18(5):59–73

    Article  Google Scholar 

  • Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4):600–612

    Article  Google Scholar 

  • Wiegand T, Sullivan G, Bjntegaard G, Luthra A (2003) Overview of the H. 264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology 13(7):560–576

    Article  Google Scholar 

  • Wu Y, Zhu S, Liu X (2000) Equivalence of Julesz ensembles and FRAME models. International Journal of Computer Vision 38(3):247–265

    Article  MATH  Google Scholar 

  • Xing G, Li J, Li S, Zhang Y (2001) Arbitrarily shaped video-object coding by wavelet. IEEE Transactions on Circuits and Systems for Video Technology 11(10):1135–1139

    Article  Google Scholar 

  • Xiong R, Xu J, Wu F, Li S (2006) Adaptive MCTF based on correlation noise model for SNR scalable video coding. IEEE Conference on Multimedia Expro 1865–1868

    Google Scholar 

  • Yoo H, Jeong J (2002) Signal-dependent wavelet transform and application to losslessimage compression. Electronics Letters 38(4):170–172

    Article  Google Scholar 

  • Zhang X, Wang W, Yoshikawa T, Takei Y (2004) Design of IIR orthogonal wavelet filter banks using lifting scheme. International Conference on Image Processing 4:2511–2514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanning Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Zheng, N., Xue, J. (2009). Functional Approximation. In: Statistical Learning and Pattern Analysis for Image and Video Processing. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-312-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-312-9_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-311-2

  • Online ISBN: 978-1-84882-312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics