Skip to main content

PDE-based Morphology for Matrix Fields: Numerical Solution Schemes

  • Chapter

Part of the book series: Advances in Pattern Recognition ((ACVPR))

Abstract

Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez and L. Mazorra. Signal and image restoration using shock filters and anisotropic diffusion. SIAM Journal on Numerical Analysis, 31:590–605, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Mathematics. American Mathematical Society, Providence, 2002.

    Google Scholar 

  3. P. J. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66:259–267, 1994.

    Article  Google Scholar 

  4. J. Bigün, G. H. Granlund, and J. Wiklund. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8):775–790, August 1991.

    Article  Google Scholar 

  5. J. P. Boris and D. L. Book. Flux corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11(1):38–69, 1973.

    Article  Google Scholar 

  6. J. P. Boris and D. L. Book. Flux corrected transport. III. Minimal error FCT algorithms. Journal of Computational Physics, 20:397–431, 1976.

    Article  Google Scholar 

  7. J. P. Boris, D. L. Book, and K. Hain. Flux corrected transport. II. Generalizations of the method. Journal of Computational Physics, 18:248–283, 1975.

    Article  Google Scholar 

  8. M. Breuß and J. Weickert. A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision, 25(2):187–201, September 2006.

    Article  MathSciNet  Google Scholar 

  9. M. Breuß and M. Welk. Staircasing in semidiscrete stabilised inverse diffusion algorithms. Journal of Computational and Applied Mathematics, 206(1):520–533, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Burgeth, A. Bruhn, S. Didas, J. Weickert, and M. Welk. Morphology for tensor data: Ordering versus PDE-based approach. Image and Vision Computing, 25(4):496–511, 2007.

    Article  Google Scholar 

  11. B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. Weickert. Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions. Signal Processing, 87(2):277–290, 2007.

    Article  Google Scholar 

  12. B. Burgeth, A. Bruhn, N. Papenberg, M. Welk, and J. Weickert. Mathematical morphology for tensor data induced by the Loewner ordering in higher dimensions. Signal Processing, 87(2):277–290, February 2007.

    Article  Google Scholar 

  13. B. Burgeth, S. Didas, L. Florack, and J. Weickert. A generic approach to diffusion filtering of matrix-fields. Computing, 81:179–197, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Burgeth, S. Didas, L. Florack, and J. Weickert. A generic approach to the filtering of matrix fields with singular PDEs. In F. Sgallari, F. Murli, and N. Paragios, editors, Scale Space and Variational Methods in Computer Vision, volume 4485 of Lecture Notes in Computer Science, pages 556–567. Springer, Berlin, 2007.

    Chapter  Google Scholar 

  15. B. Burgeth, N. Papenberg, A. Bruhn, M. Welk, C. Feddern, and J. Weickert. Morphology for higher-dimensional tensor data via Loewner ordering. In C. Ronse, L. Najman, and E. Decencière, editors, Mathematical Morphology: 40 Years On, volume 30 of Computational Imaging and Vision, pages 407–418. Springer, Dordrecht, 2005.

    Google Scholar 

  16. L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, USA 1998.

    Google Scholar 

  17. S. J. Farlow. Partial Differential Equations for Scientists and Engineers. Dover, New York, 1993.

    MATH  Google Scholar 

  18. W. Förstner and E. Gülch. A fast operator for detection and precise location of distinct points, corners and centres of circular features. In Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, pages 281–305, Interlaken, Switzerland, June 1987.

    Google Scholar 

  19. B. Gärtner. http://www.inf.ethz.ch/personal/gaertner. 2005.

  20. G. Gilboa, N. A. Sochen, and Y. Y. Zeevi. Regularized shock filters and complex diffusion. In A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, Computer Vision – ECCV 2002, volume 2350 of Lecture Notes in Computer Science, pages 399–413. Springer, Berlin, 2002.

    Google Scholar 

  21. J. Goutsias, H. J. A. M. Heijmans, and K. Sivakumar. Morphological operators for image sequences. Computer Vision and Image Understanding, 62:326–346, 1995.

    Article  Google Scholar 

  22. J. Goutsias, L. Vincent, and D. S. Bloomberg, editors. Mathematical Morphology and its Applications to Image and Signal Processing, volume 18 of Computational Imaging and Vision. Kluwer, Dordrecht, 2000.

    MATH  Google Scholar 

  23. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer, Dordrecht, 1995.

    Google Scholar 

  24. F. Guichard and J.-M. Morel. A note on two classical enhancement filters and their associated PDE’s. International Journal of Computer Vision, 52(2/3):153–160, 2003.

    Article  Google Scholar 

  25. C. G. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of the Fourth Alvey Vision Conference, pages 147–152, Manchester, UK, August 1988.

    Google Scholar 

  26. H. J. A. M. Heijmans. Morphological Image Operators. Academic Press, Boston, 1994.

    MATH  Google Scholar 

  27. H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors. Mathematical Morphology and its Applications to Image and Signal Processing, volume 12 of Computational Imaging and Vision. Kluwer, Dordrecht, 1998.

    MATH  Google Scholar 

  28. J.-B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer, Heidelberg, 2001.

    MATH  Google Scholar 

  29. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK, 1990.

    MATH  Google Scholar 

  30. H. P. Kramer and J. B. Bruckner. Iterations of a non-linear transformation for enhancement of digital images. Pattern Recognition, 7:53–58, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  31. R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK, 2002.

    MATH  Google Scholar 

  32. G. Louverdis, M. I. Vardavoulia, I. Andreadis, and P. Tsalides. A new approach to morphological color image processing. Pattern Recognition, 35:1733–1741, 2002.

    Article  MATH  Google Scholar 

  33. G. Matheron. Eléments pour une théorie des milieux poreux. Masson, Paris, 1967.

    Google Scholar 

  34. G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

    MATH  Google Scholar 

  35. S. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume 153 of Applied Mathematical Sciences. Springer, New York, 2002.

    Google Scholar 

  36. S. Osher and L. Rudin. Shocks and other nonlinear filtering applied to image processing. In A. G. Tescher, editor, Applications of Digital Image Processing XIV, volume 1567 of Proceedings of SPIE, pages 414–431. SPIE Press, Bellingham, 1991.

    Google Scholar 

  37. S. Osher and L. I. Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27:919–940, 1990.

    Article  MATH  Google Scholar 

  38. S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  39. C. Pierpaoli, P. Jezzard, P. J. Basser, A. Barnett, and G. Di Chiro. Diffusion tensor MR imaging of the human brain. Radiology, 201(3):637–648, December 1996.

    Google Scholar 

  40. A. R. Rao and B. G. Schunck. Computing oriented texture fields. CVGIP: Graphical Models and Image Processing, 53:157–185, 1991.

    Article  Google Scholar 

  41. L. Remaki and M. Cheriet. Numerical schemes of shock filter models for image enhancement and restoration. Journal of Mathematical Imaging and Vision, 18(2):153–160, March 2003.

    Article  MathSciNet  Google Scholar 

  42. E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading. SIAM Journal on Numerical Analysis, 29:867–884, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  43. G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, UK, 2001.

    MATH  Google Scholar 

  44. G. Sapiro, R. Kimmel, D. Shaked, B. B. Kimia, and A. M. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26:1363–1372, 1993.

    Article  Google Scholar 

  45. J. G. M. Schavemaker, M. J. T. Reinders, and R. van den Boomgaard. Image sharpening by morphological filtering. In Proceedings of the 1997 IEEE Workshop on Nonlinear Signal and Image Processing, Mackinac Island, MI, USA, September 1997. www.ecn.purdue.edu/NSIP/.

  46. J. Serra. Echantillonnage et estimation des phénomènes de transition minier. PhD thesis, University of Nancy, France, 1967.

    Google Scholar 

  47. J. Serra. Image Analysis and Mathematical Morphology, volume 1. Academic Press, London, 1982.

    MATH  Google Scholar 

  48. J. Serra. Image Analysis and Mathematical Morphology, volume 2. Academic Press, London, 1988.

    Google Scholar 

  49. J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK, second edition, 1999. Paperback edition.

    MATH  Google Scholar 

  50. K. Siddiqi, B. B. Kimia, and C.-W. Shu. Geometric shock-capturing ENO schemes for subpixel interpolation, computation and curve evolution. Graphical Models and Image Processing, 59:278–301, 1997.

    Article  Google Scholar 

  51. P. Soille. Morphological Image Analysis. Springer, Berlin, second edition, 2003.

    MATH  Google Scholar 

  52. P. Stoll, C.-W. Shu, and B. B. Kimia. Shock-capturing numerical methods for viscosity solutions of certain PDEs in computer vision: The Godunov, Osher–Sethian and ENO schemes. Technical Report LEMS-132, Division of Engineering, Brown University, Providence, RI, 1994.

    Google Scholar 

  53. H. Talbot and R. Beare, editors. Proceedings of the Sixth International Symposium on Mathematical Morphology and its Applications. CSIRO Publishing, Sydney, Australia, April 2002. http://www.cmis.csiro.au/ismm2002/proceedings/.

  54. R. van den Boomgaard. Numerical solution schemes for continuous-scale morphology. In M. Nielsen, P. Johansen, O. F. Olsen, and J. Weickert, editors, Scale-Space Theories in Computer Vision, volume 1682 of Lecture Notes in Computer Science, pages 199–210. Springer, Berlin, 1999.

    Chapter  Google Scholar 

  55. L. J. van Vliet, I. T. Young, and A. L. D. Beckers. A nonlinear Laplace operator as edge detector in noisy images. Computer Vision, Graphics and Image Processing, 45(2):167–195, 1989.

    Article  Google Scholar 

  56. J. Weickert. Coherence-enhancing shock filters. In B. Michaelis and G. Krell, editors, Pattern Recognition, volume 2781 of Lecture Notes in Computer Science, pages 1–8. Springer, Berlin, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Burgeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Burgeth, B., Breuß, M., Didas, S., Weickert, J. (2009). PDE-based Morphology for Matrix Fields: Numerical Solution Schemes. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds) Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-84882-299-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-299-3_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-298-6

  • Online ISBN: 978-1-84882-299-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics