Skip to main content

Stem Cells and Organ Replacement

  • Chapter
  • First Online:
Artificial Organs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. December 10, 2002;106(24):3009–17.

    PubMed  Google Scholar 

  2. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. July 10–16, 2004;364(9429):141–8.

    PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. November 6, 1998;282(5391):1145–7.

    PubMed  CAS  Google Scholar 

  4. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. May 9, 2003;300(5621):913–6.

    PubMed  CAS  Google Scholar 

  5. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. April 2000;18(4):399–404.

    PubMed  CAS  Google Scholar 

  6. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. October 10, 2000;97(21):11307–12.

    PubMed  CAS  Google Scholar 

  7. Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. September 11, 2001;98(19):10716–21.

    PubMed  CAS  Google Scholar 

  8. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. August 2001;108(3):407–14.

    PubMed  CAS  Google Scholar 

  9. Levenberg S, Golub JS, Amit M, Itskovitz-Eldor J, Langer R. Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci USA. April 2, 2002;99(7):4391–6.

    PubMed  CAS  Google Scholar 

  10. Assady S, Maor G, Amit M, Itskovitz-Eldor J, Skorecki KL, Tzukerman M. Insulin production by human embryonic stem cells. Diabetes. August 2001;50(8):1691–7.

    PubMed  CAS  Google Scholar 

  11. Gearhart J. New human embryonic stem-cell lines–more is better. N Engl J Med. March 25, 2004;350(13):1275–6.

    PubMed  CAS  Google Scholar 

  12. Robertson JA. Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet. January 2001;2(1):74–8.

    PubMed  CAS  Google Scholar 

  13. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. January 7, 2000;100(1):157–68.

    PubMed  CAS  Google Scholar 

  14. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. March 19, 2004;116(6):769–78.

    PubMed  CAS  Google Scholar 

  15. Slack JM. Stem cells in epithelial tissues. Science. February 25, 2000;287(5457):1431–3.

    PubMed  CAS  Google Scholar 

  16. Kucia M, Ratajczak J, Reca R, Janowska-Wieczorek A, Ratajczak MZ. Tissue-specific muscle, neural and liver stem/progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury. Blood Cells Mol Dis. January–February 2004;32(1):52–7.

    PubMed  CAS  Google Scholar 

  17. Kucia M, Ratajczak J, Ratajczak MZ. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell. February 2005;97(2):133–46.

    PubMed  CAS  Google Scholar 

  18. Till JE, McCulloch E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. February 1961;14:213–22.

    PubMed  CAS  Google Scholar 

  19. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19(3):180–92.

    PubMed  CAS  Google Scholar 

  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. April 2, 1999;284(5411):143–7.

    PubMed  CAS  Google Scholar 

  21. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature. April 5, 2001;410(6829):701–5.

    PubMed  CAS  Google Scholar 

  22. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. September 23, 1999;401(6751):390–4.

    PubMed  CAS  Google Scholar 

  23. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. December 1, 2000;290(5497):1779–82.

    PubMed  CAS  Google Scholar 

  24. Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. May 2002;39(5):930–6.

    PubMed  Google Scholar 

  25. Yamamoto M, Cui L, Johkura K, Asanuma K, Okouchi Y, Ogiwara N, et al. Branching ducts similar to mesonephric ducts or ureteric buds in teratomas originating from mouse embryonic stem cells. Am J Physiol Renal Physiol. January 2006;290(1):F52–60.

    PubMed  CAS  Google Scholar 

  26. Steenhard BM, Isom KS, Cazcarro P, Dunmore JH, Godwin AR, St John PL, et al. Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol. June 2005;16(6):1623–31.

    PubMed  CAS  Google Scholar 

  27. Kobayashi T, Tanaka H, Kuwana H, Inoshita S, Teraoka H, Sasaki S, et al. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun. October 21 2005;336(2):585–95.

    PubMed  CAS  Google Scholar 

  28. Kramer J, Steinhoff J, Klinger M, Fricke L, Rohwedel J. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules. Differentiation. March 2006;74(2–3):91–104.

    PubMed  CAS  Google Scholar 

  29. Vigneau C, Zheng F, Polgar K, Wilson PD, Striker G. Stem cells and kidney injury. Curr Opin Nephrol Hypertens. May 2006;15(3):238–44.

    PubMed  Google Scholar 

  30. Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. December 2005;16(12):3527–34.

    PubMed  CAS  Google Scholar 

  31. Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. July 2002;20(7):689–96.

    PubMed  CAS  Google Scholar 

  32. Poulsom R, Prodromidi EI, Pusey CD, Cook HT. Cell therapy for renal regeneration – time for some joined-up thinking? Nephrol Dial Transplant. December 2006;21(12):3349–53.

    Google Scholar 

  33. Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol. April 2006;17(4):932–42.

    PubMed  CAS  Google Scholar 

  34. Williams GM, Alvarez CA. Host repopulation of the endothelium in allografts of kidneys and aorta. Surg Forum. 1969;20:293–4.

    PubMed  CAS  Google Scholar 

  35. Sinclair RA. Origin of endothelium in human renal allografts. Br Med J. October 7, 1972;4(831):15–6.

    PubMed  CAS  Google Scholar 

  36. Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet. January 6, 2001;357(9249):33–7.

    PubMed  CAS  Google Scholar 

  37. Xu W, Baelde HJ, Lagaaij EL, De Heer E, Paul LC, Bruijn JA. Endothelial cell chimerism after renal transplantation in a rat model. Transplantation. November 15, 2002;74(9):1316–20.

    PubMed  CAS  Google Scholar 

  38. Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med. February 2006;12(2):230–4.

    PubMed  CAS  Google Scholar 

  39. Rookmaaker MB, Tolboom H, Goldschmeding R, Zwaginga JJ, Rabelink TJ, Verhaar MC. Bone-marrow-derived cells contribute to endothelial repair after thrombotic microangiopathy. Blood. February 1, 2002;99(3):1095.

    PubMed  CAS  Google Scholar 

  40. Dekel B, Shezen E, Even-Tov-Friedman S, Katchman H, Margalit R, Nagler A, et al. Transplantation of human hematopoietic stem cells into ischemic and growing kidneys suggests a role in vasculogenesis but not tubulogenesis. Stem Cells. May 2006;24(5):1185–93.

    PubMed  CAS  Google Scholar 

  41. Cornacchia F, Fornoni A, Plati AR, Thomas A, Wang Y, Inverardi L, et al. Glomerulosclerosis is transmitted by bone marrow-derived mesangial cell progenitors. J Clin Invest. December 2001;108(11):1649–56.

    PubMed  CAS  Google Scholar 

  42. Rookmaaker MB, Smits AM, Tolboom H, Van 't Wout K, Martens AC, Goldschmeding R, et al. Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol. August 2003;163(2):553–62.

    PubMed  Google Scholar 

  43. Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M, et al. The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol. July 2001;12(7):1401–9.

    PubMed  CAS  Google Scholar 

  44. Ito T, Suzuki A, Imai E, Okabe M, Hori M. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. December 2001;12(12):2625–35.

    PubMed  CAS  Google Scholar 

  45. Uchimura H, Marumo T, Takase O, Kawachi H, Shimizu F, Hayashi M, et al. Intrarenal injection of bone marrow-derived angiogenic cells reduces endothelial injury and mesangial cell activation in experimental glomerulonephritis. J Am Soc Nephrol. April 2005;16(4):997–1004.

    PubMed  Google Scholar 

  46. Ikarashi K, Li B, Suwa M, Kawamura K, Morioka T, Yao J, et al. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. May 2005;67(5):1925–33.

    PubMed  CAS  Google Scholar 

  47. Li B, Morioka T, Uchiyama M, Oite T. Bone marrow cell infusion ameliorates progressive glomerulosclerosis in an experimental rat model. Kidney Int. February 2006;69(2):323–30.

    PubMed  CAS  Google Scholar 

  48. Hayakawa M, Ishizaki M, Hayakawa J, Migita M, Murakami M, Shimada T, et al. Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis. Pediatr Res. August 2005;58(2):323–8.

    PubMed  Google Scholar 

  49. Grimm PC, Nickerson P, Jeffery J, Savani RC, Gough J, McKenna RM, et al. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med. July 12, 2001;345(2):93–7.

    PubMed  CAS  Google Scholar 

  50. Sun DF, Fujigaki Y, Fujimoto T, Yonemura K, Hishida A. Possible involvement of myofibroblasts in cellular recovery of uranyl acetate-induced acute renal failure in rats. Am J Pathol. October 2000;157(4):1321–35.

    PubMed  CAS  Google Scholar 

  51. Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells. 2003;21(5):514–20.

    PubMed  Google Scholar 

  52. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest. July 2005;115(7):1756–64.

    PubMed  CAS  Google Scholar 

  53. Roufosse C, Bou-Gharios G, Prodromidi E, Alexakis C, Jeffery R, Khan S, et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J Am Soc Nephrol. March 2006;17(3):775–82.

    PubMed  CAS  Google Scholar 

  54. Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME. A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int. October 2002;62(4):1285–90.

    PubMed  Google Scholar 

  55. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. September 2001;195(2):229–35.

    PubMed  CAS  Google Scholar 

  56. Nishida M, Kawakatsu H, Shiraishi I, Fujimoto S, Gotoh T, Urata Y, et al. Renal tubular regeneration by bone marrow-derived cells in a girl after bone marrow transplantation. Am J Kidney Dis. November 2003;42(5):E10–2.

    PubMed  Google Scholar 

  57. Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R. Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol. June 2005;16(6):1723–32.

    PubMed  CAS  Google Scholar 

  58. Szczypka MS, Westover AJ, Clouthier SG, Ferrara JL, Humes HD. Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells. 2005;23(1):44–54.

    PubMed  CAS  Google Scholar 

  59. Duffield JS, Bonventre JV. Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int. November 2005;68(5):1956–61.

    PubMed  CAS  Google Scholar 

  60. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest. July 2005;115(7):1743–55.

    PubMed  CAS  Google Scholar 

  61. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, et al. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol. July 2004;15(7):1794–804.

    PubMed  Google Scholar 

  62. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med. December 2004;14(6):1035–41.

    PubMed  Google Scholar 

  63. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, et al. Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. October 2005;68(4):1613–7.

    PubMed  Google Scholar 

  64. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. July 2005;289(1):F31–42.

    PubMed  Google Scholar 

  65. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. May 4, 2001;105(3):369–77.

    PubMed  CAS  Google Scholar 

  66. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science. Sep 27, 2002;297(5590):2256–9.

    PubMed  CAS  Google Scholar 

  67. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. July 2003;112(1):42–9.

    PubMed  CAS  Google Scholar 

  68. Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, et al. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol. May 2003;14(5):1188–99.

    PubMed  Google Scholar 

  69. Masuya M, Drake CJ, Fleming PA, Reilly CM, Zeng H, Hill WD, et al. Hematopoietic origin of glomerular mesangial cells. Blood. March 15, 2003;101(6):2215–8.

    PubMed  CAS  Google Scholar 

  70. Zheng F, Cornacchia F, Schulman I, Banerjee A, Cheng QL, Potier M, et al. Development of albuminuria and glomerular lesions in normoglycemic B6 recipients of db/db mice bone marrow: the role of mesangial cell progenitors. Diabetes. September 2004;53(9):2420–7.

    PubMed  CAS  Google Scholar 

  71. Guo JK, Ardito TA, Kashgarian M, Krause DS. Prevention of mesangial sclerosis by bone marrow transplantation. Kidney Int. September 2006;70(5):910–3.

    PubMed  Google Scholar 

  72. Perry J, Tam S, Zheng K, Sado Y, Dobson H, Jefferson B, et al. Type IV Collagen Induces Podocytic Features in Bone Marrow Stromal Stem Cells In Vitro. J Am Soc Nephrol. January 2006;17(1):66–76.

    PubMed  CAS  Google Scholar 

  73. Prodromidi EI, Poulsom R, Jeffery R, Roufosse CA, Pollard PJ, Pusey CD, et al. Bone Marrow Derived-Cells Contribute to Podocyte Regeneration and Amelioration of Renal Disease in a Mouse Model of Alport Syndrome. Stem Cells. November 2006; 24(11):2448–55.

    PubMed  CAS  Google Scholar 

  74. Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA. 2006 May 9, 2006;103(19):7321–6.

    PubMed  CAS  Google Scholar 

  75. Ninichuk V, Gross O, Segerer S, Hoffmann R, Radomska E, Buchstaller A, et al. Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. Kidney Int. July 2006;70(1):121–9.

    PubMed  CAS  Google Scholar 

  76. Hammerman MR. Renal organogenesis from transplanted metanephric primordia. J Am Soc Nephrol. May 2004;15(5):1126–32.

    PubMed  Google Scholar 

  77. Woolf AS, Palmer SJ, Snow ML, Fine LG. Creation of a functioning chimeric mammalian kidney. Kidney Int. November 1990;38(5):991–7.

    PubMed  CAS  Google Scholar 

  78. Woolf AS, Hornbruch A, Fine LG. Integration of new embryonic nephrons into the kidney. Am J Kidney Dis. June 1991;17(6):611–4.

    PubMed  CAS  Google Scholar 

  79. Rogers SA, Lowell JA, Hammerman NA, Hammerman MR. Transplantation of developing metanephroi into adult rats. Kidney Int. July 1998;54(1):27–37.

    PubMed  CAS  Google Scholar 

  80. Hammerman MR. Growing new kidneys in situ. Clin Exp Nephrol. September 2004;8(3):169–77.

    PubMed  Google Scholar 

  81. Rogers SA, Hammerman MR. Transplantation of metanephroi after preservation in vitro. Am J Physiol Regul Integr Comp Physiol. August 2001;281(2):R661–5.

    PubMed  CAS  Google Scholar 

  82. Dekel B, Amariglio N, Kaminski N, Schwartz A, Goshen E, Arditti FD, et al. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol. April 2002;13(4):977–90.

    PubMed  CAS  Google Scholar 

  83. Dekel B, Burakova T, Arditti FD, Reich-Zeliger S, Milstein O, Aviel-Ronen S, et al. Human and porcine early kidney precursors as a new source for transplantation. Nat Med. January 2003;9(1):53–60.

    PubMed  CAS  Google Scholar 

  84. Yokoo T, Ohashi T, Shen JS, Sakurai K, Miyazaki Y, Utsunomiya Y, et al. Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA. March 1 2005;102(9):3296–300.

    PubMed  CAS  Google Scholar 

  85. Humes HD, Fissell WH, Weitzel WF, Buffington DA, Westover AJ, MacKay SM, et al. Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis. May 2002;39(5):1078–87.

    PubMed  Google Scholar 

  86. Humes HD, MacKay SM, Funke AJ, Buffington DA. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int. June 1999;55(6):2502–14.

    PubMed  CAS  Google Scholar 

  87. Nikolovski J, Gulari E, Humes HD. Design engineering of a bioartificial renal tubule cell therapy device. Cell Transplant. July–August 1999;8(4):351–64.

    PubMed  CAS  Google Scholar 

  88. Humes HD, Weitzel WF, Bartlett RH, Swaniker FC, Paganini EP, Luderer JR, et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. October 2004;66(4):1578–88.

    PubMed  CAS  Google Scholar 

  89. Tiranathanagul K, Brodie J, Humes HD. Bioartificial kidney in the treatment of acute renal failure associated with sepsis. Nephrology (Carlton). August 2006;11(4):285–91.

    Google Scholar 

  90. Fissell WH. Developments towards an artificial kidney. Expert Rev Med Devices. March 2006;3(2):155–65.

    PubMed  Google Scholar 

  91. Fissell WH, Manley S, Westover A, Humes HD, Fleischman AJ, Roy S. Differentiated growth of human renal tubule cells on thin-film and nanostructured materials. Asaio J. May–June 2006;52(3):221–7.

    PubMed  CAS  Google Scholar 

  92. Devendra D, Liu E, Eisenbarth GS. Type 1 diabetes: recent developments. Bmj. March 27, 2004;328(7442):750–4.

    PubMed  Google Scholar 

  93. Lechner A, Habener JF. Stem/progenitor cells derived from adult tissues: potential for the treatment of diabetes mellitus. Am J Physiol Endocrinol Metab. Feb 2003;284(2):E259–66.

    PubMed  CAS  Google Scholar 

  94. Halvorsen TL, Beattie GM, Lopez AD, Hayek A, Levine F. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J Endocrinol. July 2000;166(1):103–9.

    PubMed  CAS  Google Scholar 

  95. Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA. December 10, 2002;99(25):16105–10.

    PubMed  CAS  Google Scholar 

  96. Miyazaki S, Yamato E, Miyazaki J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes. April 2004;53(4):1030–7.

    PubMed  CAS  Google Scholar 

  97. Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. February 2000;49(2):157–62.

    PubMed  CAS  Google Scholar 

  98. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol. June 2005;166(6):1781–91.

    PubMed  CAS  Google Scholar 

  99. Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. March 2003;111(6):843–50.

    PubMed  CAS  Google Scholar 

  100. Taneera J, Rosengren A, Renstrom E, Nygren JM, Serup P, Rorsman P, et al. Failure of transplanted bone marrow cells to adopt a pancreatic beta-cell fate. Diabetes. February 2006;55(2):290–6.

    PubMed  CAS  Google Scholar 

  101. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol. July 2003;21(7):763–70.

    PubMed  CAS  Google Scholar 

  102. Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes. January 2004;53(1):91–8.

    PubMed  CAS  Google Scholar 

  103. Lechner A, Yang YG, Blacken RA, Wang L, Nolan AL, Habener JF. No evidence for significant transdifferentiation of bone marrow into pancreatic beta-cells in vivo. Diabetes. March 2004;53(3):616–23.

    PubMed  CAS  Google Scholar 

  104. Kang EM, Zickler PP, Burns S, Langemeijer SM, Brenner S, Phang OA, et al. Hematopoietic stem cell transplantation prevents diabetes in NOD mice but does not contribute to significant islet cell regeneration once disease is established. Exp Hematol. June 2005;33(6):699–705.

    PubMed  CAS  Google Scholar 

  105. Banerjee M, Kumar A, Bhonde RR. Reversal of experimental diabetes by multiple bone marrow transplantation. Biochem Biophys Res Commun. March 4, 2005;328(1):318–25.

    PubMed  CAS  Google Scholar 

  106. Ende N, Chen R, Reddi AS. Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochem Biophys Res Commun. December 17, 2004;325(3):665–9.

    PubMed  CAS  Google Scholar 

  107. Tang DQ, Cao LZ, Burkhardt BR, Xia CQ, Litherland SA, Atkinson MA, et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes. July 2004;53(7):1721–32.

    PubMed  CAS  Google Scholar 

  108. Oh SH, Muzzonigro TM, Bae SH, LaPlante JM, Hatch HM, Petersen BE. Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for the treatment of type I diabetes. Lab Invest. May 2004;84(5):607–17.

    PubMed  CAS  Google Scholar 

  109. Fernandez Vina R, Saslavsky J, Andrin O, Vrsalovick F, Ferreyra de Silva J, Ferreyra O, et al. First word reported datas from Argentina of implant and cellular therapy with autologous adult stem cells in type 2 diabetic patients (Teceldiar study 1). 4th ISSCR Annual Meeting, Toronto; 2006.

    Google Scholar 

  110. Fernandez Vina R, Andrin O, Saslavsky J, Ferreyra de Silva J, Vrsalovick F, Camozzi L, et al. Increase of ‘c’ peptide level in type 1 diabetics patients after direct pancreas implant by endovascular way of autologous adult mononuclears CD34+CD38 (–) cells (Teceldiab 2 study). 4th ISSCR Annual Meeting, Toronto; 2006.

    Google Scholar 

  111. Health Mo. Annual Report of the Chief Medical Officer. London: Ministry of Health, UK; 2001.

    Google Scholar 

  112. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. May 14, 1998;338(20):1422–6.

    PubMed  CAS  Google Scholar 

  113. Strom SC, Fisher RA, Thompson MT, Sanyal AJ, Cole PE, Ham JM, et al. Hepatocyte transplantation as a bridge to orthotopic liver transplantation in terminal liver failure. Transplantation. February 27 1997;63(4):559–69.

    PubMed  CAS  Google Scholar 

  114. Bilir BM, Guinette D, Karrer F, Kumpe DA, Krysl J, Stephens J, et al. Hepatocyte transplantation in acute liver failure. Liver Transpl. January 2000;6(1):32–40.

    PubMed  CAS  Google Scholar 

  115. Ohashi K, Park F, Kay MA. Hepatocyte transplantation: clinical and experimental application. J Mol Med. November 2001;79(11):617–30.

    PubMed  CAS  Google Scholar 

  116. Najimi M, Sokal E. Liver cell transplantation. Minerva Pediatr. October 2005;57(5):243–57.

    PubMed  CAS  Google Scholar 

  117. Hamazaki T, Iiboshi Y, Oka M, Papst PJ, Meacham AM, Zon LI, et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. May 18, 2001;497(1):15–9.

    PubMed  CAS  Google Scholar 

  118. Jones EA, Tosh D, Wilson DI, Lindsay S, Forrester LM. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res. January 1, 2002;272(1):15–22.

    PubMed  CAS  Google Scholar 

  119. Ishii T, Yasuchika K, Fujii H, Hoppo T, Baba S, Naito M, et al. In vitro differentiation and maturation of mouse embryonic stem cells into hepatocytes. Exp Cell Res. September 10 2005;309(1):68–77.

    PubMed  CAS  Google Scholar 

  120. Yin Y, Lim YK, Salto-Tellez M, Ng SC, Lin CS, Lim SK. AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells. 2002;20(4):338–46.

    PubMed  CAS  Google Scholar 

  121. Yamada T, Yoshikawa M, Kanda S, Kato Y, Nakajima Y, Ishizaka S, et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells. 2002;20(2):146–54.

    PubMed  Google Scholar 

  122. Chinzei R, Tanaka Y, Shimizu-Saito K, Hara Y, Kakinuma S, Watanabe M, et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology. July 2002;36(1):22–9.

    PubMed  Google Scholar 

  123. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. May 14, 1999;284(5417):1168–70.

    PubMed  CAS  Google Scholar 

  124. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papaconstantinou J, Torres-Ramos CA, et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat Genet. August 1995;10(4):453–60.

    PubMed  CAS  Google Scholar 

  125. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, et al. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. December 2004;40(6):1304–11.

    PubMed  Google Scholar 

  126. Mallet VO, Mitchell C, Mezey E, Fabre M, Guidotti JE, Renia L, et al. Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo. Hepatology. April 2002;35(4):799–804.

    PubMed  Google Scholar 

  127. Terai S, Sakaida I, Yamamoto N, Omori K, Watanabe T, Ohata S, et al. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J Biochem (Tokyo). October 2003;134(4):551–8.

    CAS  Google Scholar 

  128. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ. Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol. June 2004;6(6):532–9.

    PubMed  CAS  Google Scholar 

  129. Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology. January 2000;31(1):235–40.

    PubMed  CAS  Google Scholar 

  130. Wang X, Ge S, McNamara G, Hao QL, Crooks GM, Nolta JA. Albumin-expressing hepatocyte-like cells develop in the livers of immune-deficient mice that received transplants of highly purified human hematopoietic stem cells. Blood. May 15, 2003;101(10):4201–8.

    PubMed  CAS  Google Scholar 

  131. Kanazawa Y, Verma IM. Little evidence of bone marrow-derived hepatocytes in the replacement of injured liver. Proc Natl Acad Sci USA. September 30, 2003;100(Suppl 1):11850–3.

    PubMed  CAS  Google Scholar 

  132. Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, et al. Hepatocytes from non-hepatic adult stem cells. Nature. July 20, 2000;406(6793):257.

    PubMed  CAS  Google Scholar 

  133. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, et al. Liver from bone marrow in humans. Hepatology. July 2000;32(1):11–6.

    PubMed  CAS  Google Scholar 

  134. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med. Mar 7, 2002;346(10):738–46.

    PubMed  Google Scholar 

  135. Ng IO, Chan KL, Shek WH, Lee JM, Fong DY, Lo CM, et al. High frequency of chimerism in transplanted livers. Hepatology. October 2003;38(4):989–98.

    PubMed  Google Scholar 

  136. Fogt F, Beyser KH, Poremba C, Zimmerman RL, Khettry U, Ruschoff J. Recipient-derived hepatocytes in liver transplants: a rare event in sex-mismatched transplants. Hepatology. July 2002;36(1):173–6.

    PubMed  Google Scholar 

  137. Wu T, Cieply K, Nalesnik MA, Randhawa PS, Sonzogni A, Bellamy C, et al. Minimal evidence of transdifferentiation from recipient bone marrow to parenchymal cells in regenerating and long-surviving human allografts. Am J Transplant. September 2003;3(9):1173–81.

    PubMed  Google Scholar 

  138. am Esch JS, 2nd, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, et al. Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells. April 2005;23(4):463–70.

    PubMed  Google Scholar 

  139. Gordon MY, Levicar N, Pai M, Bachellier P, Dimarakis I, Al-Allaf F, et al. Characterisation and Clinical Application of Human Cd34+ Stem/Progenitor Cell Populations Mobilised into the Blood by G-Csf. Stem Cells. July 2006;24(7):1822–30.

    Google Scholar 

  140. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, et al. Improved liver function in liver cirrhosis patients after autologous bone marrow cell infusion therapy. Stem Cells. October 2006;24(10):2292–8.

    Google Scholar 

  141. Wei H, Juhasz O, Li J, Tarasova YS, Boheler KR. Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med. October–December 2005;9(4):804–17.

    PubMed  Google Scholar 

  142. Min JY, Yang Y, Sullivan MF, Ke Q, Converso KL, Chen Y, et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg. February 2003;125(2):361–9.

    PubMed  Google Scholar 

  143. Hodgson DM, Behfar A, Zingman LV, Kane GC, Perez-Terzic C, Alekseev AE, et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol. September 2004;287(2):H471–9.

    PubMed  CAS  Google Scholar 

  144. Min JY, Huang X, Xiang M, Meissner A, Chen Y, Ke Q, et al. Homing of intravenously infused embryonic stem cell-derived cells to injured hearts after myocardial infarction. J Thorac Cardiovasc Surg. April 2006;131(4):889–97.

    PubMed  Google Scholar 

  145. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. November 2004;22(10):1282–9.

    PubMed  CAS  Google Scholar 

  146. Zhang YM, Hartzell C, Narlow M, Dudley SC, Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation. September 3, 2002;106(10):1294–9.

    PubMed  Google Scholar 

  147. Ye L, Haider H, Sim EK. Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med (Maywood). January 2006;231(1):8–19.

    CAS  Google Scholar 

  148. Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood). January 2006;231(1):39–49.

    CAS  Google Scholar 

  149. Yoon YS, Park JS, Tkebuchava T, Luedeman C, Losordo DW. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. June 29 2004;109(25):3154–7.

    PubMed  Google Scholar 

  150. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ, Koo BK, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. March 6, 2004;363(9411):751–6.

    PubMed  CAS  Google Scholar 

  151. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, Kusano K, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. February 2005;115(2):326–38.

    PubMed  CAS  Google Scholar 

  152. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. December 2003;33(6):919–26.

    PubMed  Google Scholar 

  153. Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T. Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol. November 2005;205(2):194–201.

    PubMed  CAS  Google Scholar 

  154. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, et al. Spontaneous human adult stem cell transformation. Cancer Res. April 15, 2005;65(8):3035–9.

    PubMed  CAS  Google Scholar 

  155. Chang MG, Tung L, Sekar RB, Chang CY, Cysyk J, Dong P, et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation. April 18 2006;113(15):1832–41.

    PubMed  Google Scholar 

  156. Majka SM, Jackson KA, Kienstra KA, Majesky MW, Goodell MA, Hirschi KK. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest. February 2003;111(1):71–9.

    PubMed  CAS  Google Scholar 

  157. Summer R, Kotton DN, Sun X, Fitzsimmons K, Fine A. Translational physiology: origin and phenotype of lung side population cells. Am J Physiol Lung Cell Mol Physiol. September 2004;287(3):L477–83.

    PubMed  CAS  Google Scholar 

  158. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. July 12, 1996;273(5272):242–5.

    PubMed  CAS  Google Scholar 

  159. Yeh ET, Zhang S, Wu HD, Korbling M, Willerson JT, Estrov Z. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation. October 28, 2003;108(17):2070–3.

    PubMed  Google Scholar 

  160. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. April 8, 2004;428(6983):664–8.

    PubMed  CAS  Google Scholar 

  161. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. April 8, 2004;428(6983):668–73.

    PubMed  CAS  Google Scholar 

  162. Deten A, Volz HC, Clamors S, Leiblein S, Briest W, Marx G, et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res. January 1, 2005;65(1):52–63.

    PubMed  CAS  Google Scholar 

  163. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G. A common precursor for hematopoietic and endothelial cells. Development. February 1998;125(4):725–32.

    PubMed  CAS  Google Scholar 

  164. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. August 6, 1999;85(3):221–8.

    PubMed  CAS  Google Scholar 

  165. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. March 28, 2000;97(7):3422–7.

    PubMed  CAS  Google Scholar 

  166. Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest. July 2006;116(7):1865–77.

    PubMed  CAS  Google Scholar 

  167. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. July 6, 2001;89(1):E1–7.

    PubMed  CAS  Google Scholar 

  168. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. February 13, 2003;348(7):593–600.

    PubMed  Google Scholar 

  169. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. May 15, 2005;105(10):4120–6.

    PubMed  CAS  Google Scholar 

  170. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA. August 9, 2005;102(32):11474–9.

    PubMed  CAS  Google Scholar 

  171. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. July 4, 2002;418(6893):41–9.

    PubMed  CAS  Google Scholar 

  172. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C, et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res. January 7, 2005;96(1):127–37.

    PubMed  CAS  Google Scholar 

  173. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. May 2004;10(5):494–501.

    PubMed  CAS  Google Scholar 

  174. Zhang S, Wang D, Estrov Z, Raj S, Willerson JT, Yeh ET. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation. December 21, 2004;110(25):3803–7.

    PubMed  Google Scholar 

  175. Tang YL, Zhao Q, Qin X, Shen L, Cheng L, Ge J, et al. Paracrine action enhances the effects of autologous mesenchymal stem cell transplantation on vascular regeneration in rat model of myocardial infarction. Ann Thorac Surg. July 2005;80(1):229–36; discussion 36–7.

    PubMed  Google Scholar 

  176. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. August 28, 2001;104(9):1046–52.

    PubMed  CAS  Google Scholar 

  177. Zhao YS, Wang CY, Li DX, Zhang XZ, Qiao Y, Guo XM, et al. Construction of a unidirectionally beating 3-dimensional cardiac muscle construct. J Heart Lung Transplant. August 2005;24(8):1091–7.

    PubMed  Google Scholar 

  178. Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, et al. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res. March 17, 2006;98(5):705–12.

    PubMed  CAS  Google Scholar 

  179. Baar K, Birla R, Boluyt MO, Borschel GH, Arruda EM, Dennis RG. Self-organization of rat cardiac cells into contractile 3-D cardiac tissue. Faseb J. February 2005;19(2):275–7.

    PubMed  CAS  Google Scholar 

  180. Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, et al. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials. November 2006;27(31):5409–19.

    PubMed  CAS  Google Scholar 

  181. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. December 1995;60(6 Suppl):S513–6.

    PubMed  CAS  Google Scholar 

  182. Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, et al. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation. September 24, 2002;106(12 Suppl 1):I143–50.

    PubMed  Google Scholar 

  183. Perry TE, Kaushal S, Sutherland FW, Guleserian KJ, Bischoff J, Sacks M, et al. Thoracic Surgery Directors Association Award. Bone marrow as a cell source for tissue engineering heart valves. Ann Thorac Surg. March 2003;75(3):761–7; discussion 7.

    PubMed  Google Scholar 

  184. Sutherland FW, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, et al. From stem cells to viable autologous semilunar heart valve. Circulation. May 31, 2005;111(21):2783–91.

    PubMed  Google Scholar 

  185. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gossi M, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. July 4, 2006;114(1 Suppl):I125–31.

    PubMed  Google Scholar 

  186. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol. April 2004;286(4):L643–9.

    PubMed  CAS  Google Scholar 

  187. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. February 2004;164(2):577–88.

    PubMed  CAS  Google Scholar 

  188. Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, et al. Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol. June 2000;278(6):L1256–63.

    PubMed  CAS  Google Scholar 

  189. Boers JE, Ambergen AW, Thunnissen FB. Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med. May 1999;159(5 Pt 1):1585–91.

    PubMed  CAS  Google Scholar 

  190. Adamson IY, Bowden DH. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest. January 1974;30(1):35–42.

    PubMed  CAS  Google Scholar 

  191. Evans MJ, Cabral LJ, Stephens RJ, Freeman G. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol. February 1975;22(1):142–50.

    PubMed  CAS  Google Scholar 

  192. Weiss DJ, Berberich MA, Borok Z, Gail DB, Kolls JK, Penland C, et al. Adult stem cells, lung biology, and lung disease. NHLBI/Cystic Fibrosis Foundation Workshop. Proc Am Thorac Soc. May 2006;3(3):193–207.

    PubMed  Google Scholar 

  193. Pereira RF, Halford KW, O'Hara MD, Leeper DB, Sokolov BP, Pollard MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA. May 23, 1995;92(11):4857–61.

    Google Scholar 

  194. Pereira RF, O'Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA. February 3, 1998;95(3):1142–7.

    Google Scholar 

  195. Abe S, Boyer C, Liu X, Wen FQ, Kobayashi T, Fang Q, et al. Cells derived from the circulation contribute to the repair of lung injury. Am J Respir Crit Care Med. December 1, 2004;170(11):1158–63.

    PubMed  Google Scholar 

  196. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. August 2005;33(2):145–52.

    PubMed  CAS  Google Scholar 

  197. Macpherson H, Keir P, Webb S, Samuel K, Boyle S, Bickmore W, et al. Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo. J Cell Sci. June 1, 2005;118(Pt 11):2441–50.

    PubMed  CAS  Google Scholar 

  198. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest. August 2004;114(3):438–46.

    PubMed  CAS  Google Scholar 

  199. Rippon HJ, Polak JM, Qin M, Bishop AE. Derivation of distal lung epithelial progenitors from murine embryonic stem cells using a novel three-step differentiation protocol. Stem Cells. May 2006;24(5):1389–98.

    PubMed  CAS  Google Scholar 

  200. Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng. April 2006;12(4):717–28.

    PubMed  CAS  Google Scholar 

  201. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, et al. Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. May 2006;12(5):1213–25.

    PubMed  CAS  Google Scholar 

  202. http://controlled-trials.com/ISRCTN14519481/ISRCTN14519481(accessed8October2006).

  203. Arenas E. Stem cells in the treatment of Parkinson's disease. Brain Res Bull. April 2002;57(6):795–808.

    PubMed  CAS  Google Scholar 

  204. Hellmann MA, Djaldetti R, Israel Z, Melamed E. Effect of deep brain subthalamic stimulation on camptocormia and postural abnormalities in idiopathic Parkinson's disease. Mov Disord. September 13, 2006.

    Google Scholar 

  205. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine. July 2004;10(Suppl:):S42–50.

    PubMed  Google Scholar 

  206. Kim J-H, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature. 2002;418(6893):50–6.

    PubMed  CAS  Google Scholar 

  207. Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. October 2000;28:31–40.

    PubMed  CAS  Google Scholar 

  208. Morizane A, Takahashi J, Takagi Y, Sasai Y, Hashimoto N. Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell-inducing activity. J Neurosci Res. September 15, 2002;69(6):934–9.

    PubMed  CAS  Google Scholar 

  209. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnology. 2004;22(1):53–4.

    CAS  Google Scholar 

  210. Longo L, Bygrave A, Grosveld F, Pandolfi PP. The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. September 1997;6(5):321–8.

    PubMed  CAS  Google Scholar 

  211. Blondheim N, Levy Y, Ben-Zur T, Burshtein A, Cherlow T, Kan I, et al. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev. April 2006;15(2):141–64.

    Google Scholar 

  212. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M, et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia. 2005;20(1):18–28.

    Google Scholar 

  213. Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM. Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA. September 302003;100 Suppl 1:11854–60.

    Google Scholar 

  214. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells. January 2006;24(1):115–24.

    PubMed  Google Scholar 

  215. Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci. July 6, 2005;25(27):6467–77.

    PubMed  CAS  Google Scholar 

  216. Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med. April 27, 1995;332(17):1118–24.

    PubMed  CAS  Google Scholar 

  217. Clarkson ED, Freed CR. Development of fetal neural transplantation as a treatment for Parkinson's disease. Life Sci. October 29, 1999;65(23):2427–37.

    PubMed  CAS  Google Scholar 

  218. Correia AS, Anisimov SV, Li JY, Brundin P. Stem cell-based therapy for Parkinson's disease. Ann Med. 2005;37(7):487–98.

    PubMed  CAS  Google Scholar 

  219. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. March 8, 2001;344(10):710–9.

    PubMed  CAS  Google Scholar 

  220. Olanow CW, Goetz C, Kordower JH, Stoessl AJ, Sossi V, Brin M, et al. A double-blind controlled trail of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. August 2003;54(3):403–14.

    PubMed  Google Scholar 

  221. Song Z-M, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, et al. D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci. July 15, 2002;22(14):6092–105.

    PubMed  CAS  Google Scholar 

  222. Hagell P, Piccini P, Bjorklund A, Brundin P, Rehncrona S, Widner H, et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci. July 2002;5(7):627–8.

    PubMed  CAS  Google Scholar 

  223. Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A, Oertel WH, et al. Factors affecting the clinical outcome after neural transplantation in Parkinson's disease. Brain. December 2005;128(Pt 12):2977–86.

    PubMed  Google Scholar 

  224. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B, et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res. April 1, 2005;66(1):45–54.

    PubMed  CAS  Google Scholar 

  225. Zhao LR, Duan WM, Reyes M, Verfaillie CM, Low WC. Immunohistochemical identification of multipotent adult progenitor cells from human bone marrow after transplantation into the rat brain. Brain Res Brain Res Protoc. March 2003;11(1):38–45.

    PubMed  Google Scholar 

  226. Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. December 2006;129(pt12):3238–48.

    Google Scholar 

  227. Takagi Y, Nishimura M, Morizane A, Takahashi J, Nozaki K, Hayashi J, et al. Survival and differentiation of neural progenitor cells derived from embryonic stem cells and transplanted into ischemic brain. J Neurosurg. August 2005;103(2):304–10.

    PubMed  Google Scholar 

  228. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, et al. Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. June–July 2005;19(1–2):183–93.

    PubMed  CAS  Google Scholar 

  229. Goolsby J, Marty MC, Heletz D, Chiappelli J, Tashko G, Yarnell D, et al. Hematopoietic progenitors express neural genes. Proc Natl Acad Sci USA. December 9, 2003;100(25):14926–31.

    PubMed  CAS  Google Scholar 

  230. Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K. Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol. July 2006;34(7):914–25.

    PubMed  CAS  Google Scholar 

  231. Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells. 2003;21(4):437–48.

    PubMed  Google Scholar 

  232. Ortiz-Gonzalez XR, Keene CD, Verfaillie CM, Low WC. Neural induction of adult bone marrow and umbilical cord stem cells. Curr Neurovasc res. July 2004;1(3):207–13.

    PubMed  Google Scholar 

  233. Padovan CS, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, et al. Expression of neuronal markers in differentiated marrow stromal cells and CD133+ stem-like cells. Cell Transplant. 2003;12(8):839–48.

    PubMed  Google Scholar 

  234. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. August 15, 2000;61(4):364–70.

    PubMed  CAS  Google Scholar 

  235. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. November 2001;32(11):2682–8.

    PubMed  CAS  Google Scholar 

  236. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. July 1, 2004;94(1):92–5.

    PubMed  Google Scholar 

  237. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. September 22 2006;84(7):1495–504.

    Google Scholar 

  238. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. January 2005;11(1):96–104.

    PubMed  CAS  Google Scholar 

  239. Schabitz WR, Berger C, Kollmar R, Seitz M, Tanay E, Kiessling M, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke. April 2004;35(4):992–7.

    PubMed  Google Scholar 

  240. Schabitz WR, Schwab S, Spranger M, Hacke W. Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. J Cereb Blood Flow Metab. May 1997;17(5):500–6.

    PubMed  CAS  Google Scholar 

  241. Zhang WR, Hayashi T, Iwai M, Nagano I, Sato K, Manabe Y, et al. Time dependent amelioration against ischemic brain damage by glial cell line-derived neurotrophic factor after transient middle cerebral artery occlusion in rat. Brain Res. June 8, 2001;903(1–2):253–6.

    PubMed  CAS  Google Scholar 

  242. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.

    PubMed  CAS  Google Scholar 

  243. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology. August 22, 2000;55(4):565–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Levičar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Levičar, N., Dimarakis, I., Flores, C., Prodromidi, E.I., Gordon, M.Y., Habib, N.A. (2009). Stem Cells and Organ Replacement. In: Hakim, N. (eds) Artificial Organs. New Techniques in Surgery Series, vol 4. Springer, London. https://doi.org/10.1007/978-1-84882-283-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-283-2_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-281-8

  • Online ISBN: 978-1-84882-283-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics