Skip to main content

Echocardiography

  • Chapter
  • First Online:
Critical Care of Children with Heart Disease

Abstract

Echocardiography in its current form, several generations removed from its origin in the 1950s [1], has become an invaluable tool in a modern cardiac intensive care unit environment. Coupled with a clinical examination and monitoring techniques, echocardiography can provide real-time rapid and reliable diagnostic answers that are invaluable to patient care. This noninvasive test can be used to reliably evaluate cardiac anatomy of both normal hearts and those with congenital heart disease and has replaced cardiac angiography for the preoperative diagnosis of the majority of congenital heart lesions [2–4]. In congenital or acquired cardiac disease, echocardiography may be further used to estimate intracardiac pressures and gradients across stenotic valves and vessels, determine the directionality of blood flow and pressure gradient across a defect, and examine the coronary arteries. Within the realm of critical care, echocardiography is useful to quantitative cardiac systolic and diastolic function, detect the presence of vegetations from endocarditis, and examine the cardiac structure for the presence of pericardial fluid and chamber thrombi. As with all tools, however, a thorough understanding of its uses and limitations are necessary before relying upon the information it provides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elder I, Hertz CH. The use of ultrasonic reflectoscope for the continuous recording of movement of heart walls. Kungl Fysiorgr Sallski Fund Forhandl. 1954;24:40–45.

    Google Scholar 

  2. Krabill KA, Ring WS, Foker JE, et al. Echocardiographic versus cardiac catheterization diagnosis of infants with congenital heart disease requiring cardiac surgery. Am J Cardiol. 1987;60:351–354.

    Article  PubMed  CAS  Google Scholar 

  3. Marino B, Corno A, Carotti A, et al. Pediatric cardiac surgery guided by echocardiography: established indications and new trends. Scand J Thorac Cardiovasc Surg. 1990;24:197–201.

    Article  PubMed  CAS  Google Scholar 

  4. Tworetzky W, McElhinney DB, Brook MM, et al. Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol. 1999;33:228–233.

    Article  PubMed  CAS  Google Scholar 

  5. Beaulieu Y, Marik PE. Bedside ultrasonography in the ICU. Chest. 2005;128:881–895.

    Article  PubMed  Google Scholar 

  6. Franklin DL, Schlegal W, Rushmer RF. Blood flow measured by Doppler frequency shift of backscattered ultrasound. Science. 1961;134:564.

    Article  PubMed  CAS  Google Scholar 

  7. Cyran SE, Hannon DW, Daniels SR, et al. Predictors of post-operative ventricular dysfunction in infants who have undergone primary repair of ventricular septal defect. Am Heart J. 1987;113:1144–1148.

    Article  PubMed  CAS  Google Scholar 

  8. Gutgesell HP, Paquet M, Duff DF, et al. Evaluation of left ventricular size and function by echocardiography. Results in normal children. Circulation. 1977;56:457–462.

    Article  PubMed  CAS  Google Scholar 

  9. Rowland DG, Gutgesell HP. Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborns. Am J Cardiol. 1995;75:818–821.

    Article  PubMed  CAS  Google Scholar 

  10. Colan SD, Parness IA, Spevak SP. Developmental modulation of myocardial mechanics: age and growth related alterations in afterload and contractility. J Am Coll Cardiol. 1992;19:619–629.

    Article  PubMed  CAS  Google Scholar 

  11. Schiller NB, Acquatella H, Ports TA, et al. Left ventricular volume from paired biplane two dimensional echocardiography. Circulation. 1979;60:547–555.

    Article  PubMed  CAS  Google Scholar 

  12. Silverman NH, Ports TA, Snider AR, et al. Determination of left ventricular volume in children: echocardiographic and angiographic comparisons. Circulation. 1980;62:548–557.

    Article  PubMed  CAS  Google Scholar 

  13. Dokainish H. Tissue Doppler imaging in the evaluation of left ventricular diastolic function. Curr Opin Cardiol. 2004;19:437–441.

    Article  PubMed  Google Scholar 

  14. Gulati VK, Katz WE, Follansbee WP, et al. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol. 1996;77:979–984.

    Article  PubMed  CAS  Google Scholar 

  15. Vignon P, Allot V, Lesage J, et al. Diagnosis of left ventricular diastolic dysfunction in the setting of acute changes in loading conditions. Crit Care. 2007;11:R43.

    Google Scholar 

  16. Eidem BW, McMahon CJ, Ayres NA, et al. Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities: a study in congenital heart disease. J Am Soc Echocardiogr. 2005;18:830–838.

    Article  PubMed  Google Scholar 

  17. Nagueh SF, Middleton KJ, Kopelen HA, et al. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–1533.

    Article  PubMed  CAS  Google Scholar 

  18. Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–1794.

    Article  PubMed  CAS  Google Scholar 

  19. Hicks KA, Kovack JA, Yoon GY, et al. Echocardiographic evaluation of papillary fibroelastoma: a case report and review of the literature. J Am Soc Echocardiogr. 1996;9:353–360.

    Article  PubMed  CAS  Google Scholar 

  20. Appleton CP, Hatle LK, Popp RL. Cardiac tamponade and pericardial effusion: respiratory variation in transvalvular flow velocities studied by Doppler echocardiography. J Am Coll Cardiol. 1988;11:1020–1030.

    Article  PubMed  CAS  Google Scholar 

  21. Singh S, Wann S, Schuchard G, et al. Right ventricular and right atrial collapse in patients with cardiac tamponade: a combined echocardiographic and hemodynamic study. Circulation. 1984;70:966–971.

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong W, Schilt B, Helper D, et al. Diastolic collapse of the right ventricle with cardiac tamponade: an echocardiographic study. Circulation. 1982;65:1491–1496.

    Article  PubMed  CAS  Google Scholar 

  23. Chuttani K, Pandian N, Mohandy P, et al. Left ventricular diastolic collapse: an echocardiographic sign of regional cardiac tamponade. Circulation. 1991;83:1999–2006.

    Article  PubMed  CAS  Google Scholar 

  24. Himelman R, Kircher B, Rockey D, et al. Inferior vena cava plethora with blunted respiratory response: a sensitive echocardiographic sign of cardiac tamponade. J Am Coll Cardiol. 1988;12:1470–1477.

    Article  PubMed  CAS  Google Scholar 

  25. Burstow DJ, Oh JK, Bailey KR, et al. Cardiac tamponade: characteristic Doppler observations. Mayo Clin Proc. 1989;64:312–324.

    Article  PubMed  CAS  Google Scholar 

  26. Kronzon I, Cohen ML, Winer HE. Diastolic atrial compression: a sensitive echocardiographic sign of cardiac tamponade. J Am Coll Cardiol. 1983;2:770–775.

    Article  PubMed  CAS  Google Scholar 

  27. Kilpatrick ZM, Chapman CB. On pericardiocentesis. Am J Cardiol. 1965;16:722–728.

    Article  PubMed  CAS  Google Scholar 

  28. Callahan JA, Seward JB, Tajik AJ. Cardiac tamponade: pericardiocentesis directed by two-dimensional echocardiography. Mayo Clin Proc. 1985;60:344–347.

    Article  PubMed  CAS  Google Scholar 

  29. Tsang T, El-Najdawi E, Seward JB, et al. Percutaneous echocardiographically guided pericardiocentesis in pediatric patients: evaluation of safety and efficacy. J Am Soc Echocardiogr. 1998;11:1072–1077.

    Article  PubMed  CAS  Google Scholar 

  30. Tsang T, Freeman W, Sinak L, Seward J. Echocardiographically guided pericardiocentesis: evolution and state-of-the-art technique. Mayo Clin Proc. 1998;73:647–652.

    Article  PubMed  CAS  Google Scholar 

  31. Rashkind WJ, Miller WW. Creation of an atrial defect without thoracotomy. A palliative approach to complete transposition of the great arteries. JAMA. 1966;196:991–992.

    Article  PubMed  CAS  Google Scholar 

  32. Rashkind WJ. Balloon atrioseptostomy revisited: the first fifteen years. Int J Cardiol. 1983;4:369–372.

    Article  PubMed  CAS  Google Scholar 

  33. Beitzke A, Stein JI, Suppan C. Balloon atrial septostomy under two-dimensional echocardiographic control. Int J Cardiol. 1991;30:33–42.

    Article  PubMed  CAS  Google Scholar 

  34. Santos J, Grueso J, González A, et al. Atrial septostomy with a balloon catheter under echocardiographic control. Our experience. Revista Española de Cardiologia. 1993;46:816–820.

    PubMed  CAS  Google Scholar 

  35. Allan LD, Leanage R, Wainwright R, et al. Balloon atrial septostomy under two dimensional echocardiographic control. Br Heart J. 1982;47:41–43.

    Article  PubMed  CAS  Google Scholar 

  36. Perry LW, Ruckman RN, Galioto FM Jr, et al. Echocardio­graphically assisted balloon atrial septostomy. Pediatrics. 1982;70:403–408.

    PubMed  CAS  Google Scholar 

  37. Pacileo G, Di Salvo G, Limongelli G, et al. Echocardiography in congenital heart disease: usefulness, limits and new techniques. J Cardiovasc Med. 2007;8:17–22.

    Article  Google Scholar 

  38. Weidemann F, Eyskens B, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiogr. 2002;15:20–28.

    Article  PubMed  Google Scholar 

  39. King DL, Harrison MR, King DL Jr, et al. Improved reproducibility of left atrial and left ventricular measurements by guided three-dimensional echocardiography. J Am Coll Cardiol. 1992;20:1238–1245.

    Article  PubMed  CAS  Google Scholar 

  40. Siu SC, Rivera JM, Guerrero JL, Handschumacher MD, et al. Three-dimensional echocardiography. In vivo validation for left ventricular volume and function. Circulation. 1993;88:1715–1723.

    Article  PubMed  CAS  Google Scholar 

  41. Jiang L, de Prada JA Vazquez, Handschumacher MD, et al. Three-dimensional echocardiography: in vivo validation for right ventricular free wall mass as an index of hypertrophy. J Am Coll Cardiol. 1994;23:1715–1722.

    Article  PubMed  CAS  Google Scholar 

  42. Gopal AS, Schnellbaecher MJ, Shen Z, et al. Freehand three-dimensional echocardiography for determination of left ventricular volume and mass in patients with abnormal ventricles: comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 1997;10:853–861.

    Article  PubMed  CAS  Google Scholar 

  43. Gopal AS, Keller AM, Rigling R, et al. Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol. 1993;22:258–270.

    Article  PubMed  CAS  Google Scholar 

  44. Sapin PM, Schroder KM, Gopal AS, et al. Comparison of two- and three-dimensional echocardiography with cineventriculography for measurement of left ventricular volume in patients. J Am Coll Cardiol. 1994;24:1054–1063.

    Article  PubMed  CAS  Google Scholar 

  45. Nosir YF, Lequin MH, Kasprzak JD, et al. Measurements and day-to-day variabilities of left ventricular volumes and ejection fraction by three-dimensional echocardiography and comparison with magnetic resonance imaging. Am J Cardiol. 1998;82:209–214.

    Article  PubMed  CAS  Google Scholar 

  46. Poutanen T, Ikonen A, Jokinen E, et al. Transthoracic three-dimensional echocardiography is as good as magnetic resonance imaging in measuring dynamic changes in left ventricular volume during the heart cycle in children. Eur J Echocardiogr. 2001;2:31–39.

    PubMed  CAS  Google Scholar 

  47. Qi X, Cogar B, Hsiung MC, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of left ventricular volumes, ejection fraction, and mass compared with magnetic resonance imaging. Echocardiography. 2007;24:166–173.

    Article  PubMed  Google Scholar 

  48. Acar P, Marx GR, Saliba Z, et al. Three-dimensional echocardiographic measurement of left ventricular stroke volume in children: comparison with Doppler method. Pediatr Cardiol. 2001;22:116–120.

    Article  PubMed  CAS  Google Scholar 

  49. Parranon S, Abadir S, Acar P. New insight into the tricuspid valve in Ebstein anomaly using three-dimensional echocardiography. Heart. 2006;92:1627.

    Article  PubMed  CAS  Google Scholar 

  50. Acar P, Abadir S, Roux D, et al. Ebstein’s anomaly assessed by real-time 3-D echocardiography. Ann Thorac Surg. 2006;82:731–733.

    Article  PubMed  Google Scholar 

  51. Takahashi K, Guerra V, Roman KS, et al. Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect. J Am Soc Echocardiogr. 2006;19:1502–1510.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Tissot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London Limited

About this chapter

Cite this chapter

Tissot, C., Younoszai, A.K., Phelps, C. (2009). Echocardiography. In: Munoz, R., Morell, V., Cruz, E., Vetterly, C. (eds) Critical Care of Children with Heart Disease. Springer, London. https://doi.org/10.1007/978-1-84882-262-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-262-7_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-261-0

  • Online ISBN: 978-1-84882-262-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics